A quantitative model based on an experimental study for the magnetoelectric coupling at the interface of cobalt ferrite-barium titanate nanocomposites

被引:24
|
作者
Rasly, M. [1 ,3 ]
Afifi, M. [2 ]
Shalan, A. E. [3 ]
Rashad, M. M. [3 ]
机构
[1] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[2] Natl Inst Stand, Ultrason Lab, Tersa St,POB 136, El Giza 12211, Egypt
[3] Cent Met Res & Dev Inst, POB 87, Helwan 11421, Egypt
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2017年 / 123卷 / 05期
关键词
MAGNETIC-PROPERTIES;
D O I
10.1007/s00339-017-0954-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Abstract: An experimental study has been proposed to quantitatively analyze the magnetoelectric coupling at the interface of magnetoelectric nanocomposites. For that, we present a quantitative model to switch the magnetoelectric response based on the relative constituent ratios and the interface interaction for a case study: magnetoelectric [(1 − x) CoFe2O4 (CFO) + (x) BaTiO3 (BTO): x = 0.0, 0.25, 0.50, 0.75, and 1.0) nanocomposites. The parameters used to develop this model are function of magnetization, polarization and their magnetoelectric coupling. The analysis showed that: (1) the direct–direct interaction acts a switching tool for the magnetoelectric coupling and (2) it is directly proportional to x-content for the whole matrix. Overall, this observation enables the control of the inter-conversion of energies stored in electric and magnetic fields for several electronic applications as magnetic field sensors and transducers. Graphical Abstract: The difference number Nd or percentage DP, % between CFO and BTO nanoparticles is inversely proportional to x within [(1-x) CFO + (x) BTO: x = 0.0, 0.25, 0.5, 0.75, and 1] within the whole matrix, leading to that the direct-direct interaction at CFO-BTO interface gradually increases from αE=dEdH[Figure not available: see fulltext.] © 2017, Springer-Verlag Berlin Heidelberg.
引用
收藏
页数:9
相关论文
共 6 条
  • [1] Magnetoelectric coupling on multiferroic cobalt ferrite-barium titanate ceramic composites with different connectivity schemes
    Etier, Morad
    Schmitz-Antoniak, Carolin
    Salamon, Soma
    Trivedi, Harsh
    Gao, Yanling
    Nazrabi, Ahmadshah
    Landers, Joachim
    Gautam, Devendraprakash
    Winterer, Markus
    Schmitz, Detlef
    Wende, Heiko
    Shvartsman, Vladimir V.
    Lupascu, Doru C.
    ACTA MATERIALIA, 2015, 90 : 1 - 9
  • [2] Effects of the chemical composition of the magnetostrictive phase on the dielectric and magnetoelectric properties of cobalt ferrite-barium titanate composites
    Hrib, L. M.
    Caltun, O. F.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (23) : 6644 - 6648
  • [3] Carbon combustion synthesis of Janus-like particles of magnetoelectric cobalt ferrite and barium titanate
    De Leo, C. Trevino
    Dannangoda, G. C.
    Hobosyan, M. A.
    Held, J. T.
    Samghabadi, F. Safi
    Khodadadi, M.
    Litvinov, D.
    Mkhoyan, K. A.
    Martirosyan, K. S.
    CERAMICS INTERNATIONAL, 2021, 47 (04) : 5415 - 5422
  • [4] Experimental study on the radiation protecting ability of composites containing barium titanate and nanospinel ferrite
    Hannachi, E.
    Sayyed, M. I.
    Slimani, Y.
    Almessiere, M. A.
    Baykal, A.
    Elsafi, M.
    RADIATION PHYSICS AND CHEMISTRY, 2023, 212
  • [5] Magnetodielectric coupling in barium titanate-cobalt ferrite composites obtained via thermally-assisted high-energy ball milling
    Martinez-Perez, J. P.
    Bolarin-Miro, A. M.
    Cortes-Escobedo, C. A.
    Sanchez-De Jesus, F.
    CERAMICS INTERNATIONAL, 2022, 48 (07) : 9527 - 9533
  • [6] Study of barium titanate/nickel-zinc ferrite based composites: Electrical and magnetic properties and humidity sensitivity
    Petrovi, Mirjana M. Vijatovic
    Dzunuzovic, Adis
    Bobic, Jelena D.
    Ilic, Nikola
    Stijepovi, Ivan
    Stojanovi, Biljana D.
    PROCESSING AND APPLICATION OF CERAMICS, 2020, 14 (01) : 9 - 18