Strictly localized bounding functions for vector second-order boundary value problems

被引:9
作者
Andres, Jan [1 ]
Malaguti, Luisa [2 ]
Pavlackova, Martina [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Math Anal & Appl Math, Olomouc 77900, Czech Republic
[2] Univ Modena & Reggio Emilia, Dept Engn Sci & Methods, I-42100 Reggio Emilia, Italy
关键词
Vector second-order Floquet problem; Strictly localized bounding functions; Solutions in a given set; Scorza-Dragoni technique; Evolution systems; Dry friction problem; Coexistence of periodic and anti-periodic solutions; DIFFERENTIAL-INCLUSIONS; SETS;
D O I
10.1016/j.na.2009.05.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The solvability of the second-order Floquet problem in a given set is established by means of C(2)-bounding functions for vector upper-Caratheodory systems. The applied Scorza-Dragoni type technique allows us to impose related conditions strictly on the boundaries of bound sets. An illustrating example is supplied for a dry friction problem. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6019 / 6028
页数:10
相关论文
共 19 条
[1]  
Andres J, 2001, Z ANAL ANWEND, V20, P709
[2]  
Andres J, 2007, DYNAM SYST APPL, V16, P37
[3]  
Andres J, 2009, DYNAM SYST APPL, V18, P275
[4]   Bound sets approach to boundary value problems for vector second-order differential inclusions [J].
Andres, Jan ;
Kozusnikova, Martina ;
Malaguti, Luisa .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :28-44
[5]   On the Floquet problem for second-order Marchaud differential systems [J].
Andres, Jan ;
Kozusnikova, Martina ;
Malaguti, Luisa .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :360-372
[6]  
[Anonymous], ABSTR APPL MATH
[7]  
[Anonymous], 2003, TOPOLOGICAL FIXED PO
[8]  
Aubin JP., 1984, Differential Inclusions: Set-Valued Maps and Viability Theory, Grundlehren der mathematischen Wissenschaften
[9]   The solution set to BVP for some functional differential inclusions [J].
Augustynowicz, A ;
Dzedzej, Z ;
Gelman, BD .
SET-VALUED ANALYSIS, 1998, 6 (03) :257-263
[10]  
BENEDETTI I, SHARP CONDITIO UNPUB