Fracture mechanisms in multilayer phosphorene assemblies: from brittle to ductile

被引:13
作者
Liu, Ning [1 ]
Hong, Jiawang [2 ]
Zeng, Xiaowei [3 ]
Pidaparti, Ramana [1 ]
Wang, Xianqiao [1 ]
机构
[1] Univ Georgia, Coll Engn, Athens, GA 30602 USA
[2] Beijing Inst Technol, Dept Appl Mech, Beijing 100081, Peoples R China
[3] Univ Texas San Antonio, Dept Mech Engn, San Antonio, TX 78249 USA
基金
美国国家科学基金会;
关键词
COARSE-GRAINED MODEL; MOLECULAR-DYNAMICS; LENGTH SCALES; GRAPHENE; BEHAVIOR; ENERGY; FIELD; GRAPHITE; ORDER; FILMS;
D O I
10.1039/c7cp01033h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The outstanding mechanical performance of nacre has stimulated numerous studies on the design of artificial nacres. Phosphorene, a new two-dimensional (2D) material, has a crystalline in-plane structure and non-bonded interaction between adjacent flakes. Therefore, multi-layer phosphorene assemblies (MLPs), in which phosphorene flakes are piled up in a staggered manner, may exhibit outstanding mechanical performance, especially exceptional toughness. Therefore, molecular dynamics simulations are performed to study the dependence of the mechanical properties on the overlap distance between adjacent phosphorene layers and the number of phosphorene flakes per layer. The results indicate that when the flake number is equal to 1, a transition of fracture patterns is observed by increasing the overlap distance, from a ductile failure controlled by interfacial friction to a brittle failure dominated by the breakage of covalent bonds inside phosphorene flakes. Moreover, the failure pattern can be tuned by changing the number of flakes in each phosphorene layer. The results imply that the ultimate strength follows a power law with the exponent 0.5 in terms of the flake number, which is in good agreement with our analytical model. Furthermore, the flake number in each phosphorene layer is optimized as 2 when the temperature is 1 K in order to potentially achieve both high toughness and strength. Moreover, our results regarding the relations between mechanical performance and overlap distance can be explained well using a shear-lag model. However, it should be pointed out that increasing the temperature of MLPs could cause the transition of fracture patterns from ductile to brittle. Therefore, the optimal flake number depends heavily on temperature to achieve both its outstanding strength and toughness. Overall, our findings unveil the fundamental mechanism at the nanoscale for MLPs as well as provide a method to design phosphorene-based structures with targeted properties via tunable overlap distance and flake number in phosphorene layers.
引用
收藏
页码:13083 / 13092
页数:10
相关论文
共 44 条
[1]   Microscopic determination of the interlayer binding energy in graphite [J].
Benedict, LX ;
Chopra, NG ;
Cohen, ML ;
Zettl, A ;
Louie, SG ;
Crespi, VH .
CHEMICAL PHYSICS LETTERS, 1998, 286 (5-6) :490-496
[2]   Nature designs tough collagen: Explaining the nanostructure of collagen fibrils [J].
Buehler, Markus J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (33) :12285-12290
[3]   A characteristic length for stress transfer in the nanostructure of biological composites [J].
Chen, B. ;
Wu, P. D. ;
Gao, H. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (7-8) :1160-1164
[4]   Mechanical strength of boron nitride nanotube-polymer interfaces [J].
Chen, Xiaoming ;
Zhang, Liuyang ;
Park, Cheol ;
Fay, Catharine C. ;
Wang, Xianqiao ;
Ke, Changhong .
APPLIED PHYSICS LETTERS, 2015, 107 (25)
[5]   Meso-origami: Folding multilayer graphene sheets [J].
Cranford, Steven ;
Sen, Dipanjan ;
Buehler, Markus J. .
APPLIED PHYSICS LETTERS, 2009, 95 (12)
[6]   Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells [J].
Dai, Jun ;
Zeng, Xiao Cheng .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (07) :1289-1293
[7]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[8]   Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing [J].
Dimas, Leon S. ;
Bratzel, Graham H. ;
Eylon, Ido ;
Buehler, Markus J. .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (36) :4629-4638
[9]   The Effect of Inter layer Adhesion on the Mechanical Behaviors of Macroscopic Graphene Oxide Papers [J].
Gao, Yun ;
Liu, Lu-Qi ;
Zu, Sheng-Zhen ;
Peng, Ke ;
Zhou, Ding ;
Han, Bao-Hang ;
Zhang, Zhong .
ACS NANO, 2011, 5 (03) :2134-2141
[10]   ENERGY OF COHESION, COMPRESSIBILITY, AND THE POTENTIAL ENERGY FUNCTIONS OF THE GRAPHITE SYSTEM [J].
GIRIFALCO, LA ;
LAD, RA .
JOURNAL OF CHEMICAL PHYSICS, 1956, 25 (04) :693-697