Neuro-fuzzy tension controller for tandem rolling

被引:2
|
作者
Janabi-Sharifi, F [1 ]
Liu, J [1 ]
机构
[1] Ryerson Polytech Inst, Dept Mech Aerosp & Ind Engn, Toronto, ON M5B 2K3, Canada
来源
PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT CONTROL | 2002年
关键词
tension control; fuzzy logic; neuro-fuzzy system; rolling mill;
D O I
10.1109/ISIC.2002.1157781
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A fuzzy logic controller (FLC) is designed to maintain constant tension for tandem rolling mills. Envisioning fuzzy inference system as neural network and introducing tutor, backward propagation algorithm is used as self-organization technique for FLC to approach the best parameters under supervision. Simulation results exhibit the generalization and adaptivity of neuro-fuzzy controller in offline tuning.
引用
收藏
页码:309 / 314
页数:6
相关论文
共 50 条
  • [31] Approximation abilities of neuro-fuzzy networks
    Mrowczynska, Maria
    GEODESY AND CARTOGRAPHY, 2010, 59 (01): : 13 - 27
  • [32] Rough subspace neuro-fuzzy system
    Siminski, Krzysztof
    FUZZY SETS AND SYSTEMS, 2015, 269 : 30 - 46
  • [33] Neuro-fuzzy system for robotics applications
    Rao, DH
    Kamat, HV
    JOURNAL OF THE INSTITUTION OF ELECTRONICS AND TELECOMMUNICATION ENGINEERS, 1996, 42 (4-5): : 325 - 333
  • [34] Neuro-fuzzy system with weighted attributes
    Krzysztof Simiński
    Soft Computing, 2014, 18 : 285 - 297
  • [35] NFL - Free Library for Fuzzy and Neuro-Fuzzy Systems
    Siminski, Krzysztof
    BEYOND DATABASES, ARCHITECTURES AND STRUCTURES (BDAS): PAVING THE ROAD TO SMART DATA PROCESSING AND ANALYSIS, 2019, 1018 : 139 - 150
  • [36] Neuro-Fuzzy Mobile Robot Navigation
    Tan Ai, Richard Josiah C.
    Dadios, Elmer P.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [37] A neuro-fuzzy technique for document binarisation
    Papamarkos, N
    NEURAL COMPUTING & APPLICATIONS, 2003, 12 (3-4) : 190 - 199
  • [38] Adaptive neuro-fuzzy pedagogical recommender
    Sevarac, Zoran
    Devedzic, Vladan
    Jovanovic, Jelena
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (10) : 9797 - 9806
  • [39] Hierarchical neuro-fuzzy quadtree models
    de Souza, FJ
    Vellasco, MMR
    Pacheco, MAC
    FUZZY SETS AND SYSTEMS, 2002, 130 (02) : 189 - 205
  • [40] A novel approach to neuro-fuzzy classification
    Ghosh, Ashish
    Shankar, B. Uma
    Meher, Saroj K.
    NEURAL NETWORKS, 2009, 22 (01) : 100 - 109