High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries

被引:105
作者
Ali, Gomaa A. M. [1 ,2 ]
Yusoff, Mashitah M. [1 ]
Shaaban, Essam R. [3 ]
Chong, Kwok Feng [1 ]
机构
[1] Univ Malaysia Pahang, Fac Ind Sci & Technol, Gambang 26300, Kuantan, Malaysia
[2] Al Azhar Univ, Chem Dept, Fac Sci, Assiut 71524, Egypt
[3] Al Azhar Univ, Phys Dept, Fac Sci, Assiut 71524, Egypt
关键词
Spent batteries; Supercapacitance; Electrochemical conversion; MnO2; nanoflower; MANGANESE OXIDE; BIRNESSITE MNO2; CO3O4/SIO2; NANOCOMPOSITES; ALKALINE BATTERIES; ZINC-CARBON; FILMS; CONVERSION; RECOVERY; DIOXIDE; MN3O4;
D O I
10.1016/j.ceramint.2017.03.195
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
MnO2 nanoflower is prepared by electrochemical conversion of Mn3O4 obtained by heat treatment of spent zinc?carbon batteries cathode powder. The heat treated and converted powders were characterized by TGA, XRD, FTIR, FESEM and TEM techniques. XRD analyses show formation of Mn3O4 and MnO2 phases for the heat treated and converted powders, respectively. FESEM images indicate the formation of porous nanoflower structure of MnO2, while, condensed aggregated particles are obtained for Mn3O4. The energy band gap of MnO2 is obtained from UV-Vis spectra to be 2.4 eV. The electrochemical properties are investigated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance techniques using three-electrode system. The specific capacitance of MnO2 nanoflower (309 F g(-1) at 0.1 A g(-1)) is around six times higher than those obtained from the heat treated one (54 F g(-1) at 0.1 A g(-1)). Moreover, it has high capacitance retention up to 93% over 1650 cycles. Impedance spectra of MnO2 nanoflower show very small resistances and high electrochemical active surface area (340 m(2) g(-1)). The present work demonstrates a novel electrochemical approach to recycle spent zinc-carbon batteries into high value supercapacitor electrode.
引用
收藏
页码:8440 / 8448
页数:9
相关论文
共 50 条
  • [1] Ali Gomaa Abdelgawad Mohammed, 2015, Advanced Materials Research, V1113, P550, DOI 10.4028/www.scientific.net/AMR.1113.550
  • [2] Ali G. A. M., 2016, ADV MAT RES, V1133, P447
  • [3] Ali GAM, 2016, ARPN Journal of Engineering and Applied Sciences, V11, P9712
  • [4] Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study
    Ali, Gomaa A. M.
    Yusoff, Mashitah M.
    Ng, Yun Hau
    Lim, Hong Ngee
    Chong, Kwok Feng
    [J]. CURRENT APPLIED PHYSICS, 2015, 15 (10) : 1143 - 1147
  • [5] Ali GAM, 2015, REV ADV MATER SCI, V41, P35
  • [6] Calcium-based nanosized mixed metal oxides for supercapacitor application
    Ali, Gomaa A. M.
    Wahba, Osama A. G.
    Hassan, Ali M.
    Fouad, Osama A.
    Chong, Kwok Feng
    [J]. CERAMICS INTERNATIONAL, 2015, 41 (06) : 8230 - 8234
  • [7] Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery
    Ali, Gomaa A. M.
    Tan, Ling Ling
    Jose, Rajan
    Yusoff, Mashitah M.
    Chong, Kwok Feng
    [J]. MATERIALS RESEARCH BULLETIN, 2014, 60 : 5 - 9
  • [8] Co3O4/SiO2 nanocomposites for supercapacitor application
    Ali, Gomaa A. M.
    Fouad, Osama A.
    Makhlouf, Salah A.
    Yusoff, Mashitah M.
    Chong, Kwok Feng
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2014, 18 (09) : 2505 - 2512
  • [9] Structural, optical and electrical properties of sol-gel prepared mesoporous Co3O4/SiO2 nanocomposites
    Ali, Gomaa A. M.
    Fouad, Osama A.
    Makhlouf, Salah A.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 579 : 606 - 611
  • [10] Aziz R.A., 2013, ELECTROCHIM ACTA, V113, P141, DOI DOI 10.1016/J