In Vitro Assessment of Putative PD-1/PD-L1 Inhibitors: Suggestions of an Alternative Mode of Action

被引:24
作者
Blevins, Derek J. [1 ]
Hanley, Ronan [1 ]
Bolduc, Trevor [1 ]
Powell, David A. [2 ]
Gignac, Michael [1 ]
Walker, Kayleigh [3 ]
Carr, Mark D. [3 ]
Hof, Fraser [1 ]
Wulff, Jeremy E. [1 ]
机构
[1] Univ Victoria, Dept Chem, POB 3065 STN CSC, Victoria, BC V8W 3V6, Canada
[2] Incept Sci Canada, 210-887 Great Northern Way, Vancouver, BC V5T 4T5, Canada
[3] Univ Leicester, Leicester Inst Struct & Chem Biol, Leicester, Leics, England
来源
ACS MEDICINAL CHEMISTRY LETTERS | 2019年 / 10卷 / 08期
基金
加拿大自然科学与工程研究理事会;
关键词
PD-1; PD-L1; protein-protein interaction inhibitors; SPR; SMALL MOLECULES; PD-L1; CANCER; EXPRESSION; DOCETAXEL; OVEREXPRESSION; ASSOCIATION; ANTIBODIES; NIVOLUMAB; PATHWAY;
D O I
10.1021/acsmedchemlett.9b00221
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
The programmed cell death protein 1 (PD-1) signaling axis is among the most important therapeutic targets in modern oncology. Aurigene Discovery Technologies Ltd. (Aurigene) has patented a series of peptidomimetic small molecules derived from the PD-1 protein sequence for use in targeting the interaction between PD-1 and its ligand, PD-L1. We evaluated three of Aurigenes most potent compounds in SPR binding assays. Our results showed that these compounds-each of which is known to be potently effective in a splenocyte recovery assay-do not directly inhibit the PD-1/PD-L1 interaction nor do they appear to bind to either of the constituent proteins, indicating that another mechanism is at play. As a result of these studies and upon consideration of structural features within the PD-1/PD-L1 complex, we hypothesize that the Aurigene molecules may interact with a currently unknown protein capable of regulating the PD-1 axis.
引用
收藏
页码:1187 / 1192
页数:11
相关论文
共 52 条
  • [31] Overexpression and gene amplification of PD-L1 in cancer cells and PD-L1+ immune cells in Epstein-Barr virus-associated gastric cancer: the prognostic implications
    Saito, Ruri
    Abe, Hiroyuki
    Kunita, Akiko
    Yamashita, Hiroharu
    Seto, Yasuyuki
    Fukayama, Masashi
    [J]. MODERN PATHOLOGY, 2017, 30 (03) : 427 - 439
  • [32] Santarpia M, 2015, TRANSL LUNG CANCER R, V4, P728, DOI 10.3978/j.issn.2218-6751.2015.12.04
  • [33] Sasikumar P. G. N., 2013, [No title captured], Patent No. [WO2013144704A1, 2013144704]
  • [34] Sasikumar P. G. N., 2016, [No title captured], Patent No. [WO2016142886A2, 2016142886]
  • [35] Sasikumar P. G. N, 2014, Patent No. [WO 2015033299 A1, 2015033299]
  • [36] Sasikumar P. G. N, 2011, Patent No. [US 2011031873 A1, 2011031873]
  • [37] Sasikumar PGN, 2013, United States patent, Patent No. [US 20130237580, 20130237580]
  • [38] Small-Molecule Immune Checkpoint Inhibitors Targeting PD-1/PD-L1 and Other Emerging Checkpoint Pathways
    Sasikumar, Pottayil G.
    Ramachandra, Murali
    [J]. BIODRUGS, 2018, 32 (05) : 481 - 497
  • [39] Sharpe AH, 2011, New bis((hetero)aryl) sulfenyl/sulfonyl/carbonyl compounds used in pharmaceutical composition for treating or preventing e.g. herpes simplex virus infection, cancer, rheumatoid arthritis, multiple sclerosis, and type I diabetes patent, Patent No. [WO2011082400-A2, 2011082400]
  • [40] The diverse functions of the PD1 inhibitory pathway
    Sharpe, Arlene H.
    Pauken, Kristen E.
    [J]. NATURE REVIEWS IMMUNOLOGY, 2018, 18 (03) : 153 - 167