Theory of 2-3 heaps

被引:11
作者
Takaoka, T [1 ]
机构
[1] Univ Canterbury, Dept Comp Sci, Christchurch 1, New Zealand
关键词
D O I
10.1016/S0166-218X(02)00219-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As an alternative to the Fibonacci heap, we design a new data structure called a 2-3 heap, which supports n insert, n delete-min, and m decrease-key operations in O(m + n log n) time. Our experiments show the 2-3 heap is more efficient. The new data structure will have a wide application in graph algorithms. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 9 条
[1]  
ADELSONVELSKII GM, 1962, SOV MATH DOKL, V3, P1259
[2]  
Aho A.V., 1974, The Design and Analysis of Computer Algorithms
[3]   FASTER ALGORITHMS FOR THE SHORTEST-PATH PROBLEM [J].
AHUJA, RK ;
MEHLHORN, K ;
ORLIN, JB ;
TARJAN, RE .
JOURNAL OF THE ACM, 1990, 37 (02) :213-223
[4]  
Bondy J.A., 2008, GRAD TEXTS MATH
[5]  
Dijkstra E. W., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[6]   RELAXED HEAPS - AN ALTERNATIVE TO FIBONACCI HEAPS WITH APPLICATIONS TO PARALLEL COMPUTATION [J].
DRISCOLL, JR ;
GABOW, HN ;
SHRAIRMAN, R ;
TARJAN, RE .
COMMUNICATIONS OF THE ACM, 1988, 31 (11) :1343-1354
[7]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615
[8]   SHORTEST CONNECTION NETWORKS AND SOME GENERALIZATIONS [J].
PRIM, RC .
BELL SYSTEM TECHNICAL JOURNAL, 1957, 36 (06) :1389-1401
[9]   DATA STRUCTURE FOR MANIPULATING PRIORITY QUEUES [J].
VUILLEMIN, J .
COMMUNICATIONS OF THE ACM, 1978, 21 (04) :309-315