NONTRIVIAL SOLUTIONS TO BOUNDARY VALUE PROBLEMS FOR SEMILINEAR Δγ-DIFFERENTIAL EQUATIONS

被引:2
作者
Luyen, Duong Trong [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Tan Phong Ward, 19 Nguyen Huu Tho St,Dist 7, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Tan Phong Ward, 19 Nguyen Huu Tho St,Dist 7, Ho Chi Minh City, Vietnam
关键词
Delta(gamma)-Laplace problem; Cerami condition; variational method; weak solution; Mountain Pass Theorem; TIME BEHAVIOR; AMBROSETTI; EXISTENCE; LAPLACIAN; GROWTH;
D O I
10.21136/AM.2021.0363-19
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of nontrivial weak solutions for the following boundary value problem: -Delta(gamma)u = f(x, u) in Omega, u = 0 on partial derivative Omega, where Omega is a bounded domain with smooth boundary in R-N, Omega boolean AND {x(j) = 0} not equal phi for some j, Delta(gamma) is a subelliptic linear operator of the type Delta(gamma) := Sigma(N)(j=1) partial derivative(xj) (gamma(2)(j)partial derivative(xj)), partial derivative(xj) := partial derivative/partial derivative(xj), N >= 2, where gamma(x) = (gamma(1)(x), gamma(2)(x), ... , gamma(N)(x)) satisfies certain homogeneity conditions and degenerates at the coordinate hyperplanes and the nonlinearity f(x, xi) is of subcritical growth and does not satisfy the Ambrosetti-Rabinowitz (AR) condition.
引用
收藏
页码:461 / 478
页数:18
相关论文
共 36 条
[1]  
Ambrosetti A, 2007, CAM ST AD M, V104, P1, DOI 10.1017/CBO9780511618260
[2]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[3]  
Brezis H, 2011, UNIVERSITEXT, P349, DOI 10.1007/978-0-387-70914-7_11
[4]  
CERUMI G, 1980, ANN MAT PUR APPL, V124, P161
[5]  
CERUMI G, 1978, REND SCI MAT FIS CHI, V112, P332
[6]   Existence of solutions to Δλ-Laplace equations without the Ambrosetti-Rabinowitz condition [J].
Cung The Anh ;
Bui Kim My .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) :137-150
[7]   Existence of infinitely many solutions for semilinear degenerate Schrodinger equations [J].
Duong Trong Luyen ;
Nguyen Mirth Tri .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) :1271-1286
[8]   Global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator [J].
Duong Trong Luyen ;
Nguyen Minh Tri .
ANNALES POLONICI MATHEMATICI, 2016, 117 (02) :141-161
[9]   AN EMBEDDING THEOREM FOR SOBOLEV SPACES RELATED TO NON-SMOOTH VECTOR-FIELDS AND HARNACK INEQUALITY [J].
FRANCHI, B ;
LANCONELLI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (13) :1237-1264
[10]   EXISTENCE AND NONEXISTENCE RESULTS FOR SEMILINEAR EQUATIONS ON THE HEISENBERG-GROUP [J].
GAROFALO, N ;
LANCONELLI, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1992, 41 (01) :71-98