Bayesian inference for Birnbaum-Saunders distribution and its generalization

被引:6
作者
Sha, Naijun [1 ]
Ng, Tun Lee [2 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
关键词
Birnbaum-Saunders distribution; generalization; data augmentation; Bayesian method; MCMC sampling; estimation; 62F15; LIFE DISTRIBUTIONS; INTERVAL ESTIMATION; MOMENT ESTIMATION; FATIGUE; FAMILY; MODEL; PARAMETERS; EXTENSION; RATIO;
D O I
10.1080/00949655.2017.1334145
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a Bayesian approach for parameter inference of the Birnbaum-Saunders distribution [Birnbaum ZW, Saunders SC. A new family of life distributions. J Appl Probab. 1969;6:319-327], as well as the generalized Birnbaum-Saunders distribution developed by Owen [A new three-parameter extension to the Birnbaum-Saunders distribution. IEEE Trans Reliab. 2006;55:475-479], in the presence of random right-censored data. To handle the instance of commonly occurred censored observations, we utilize the data augmentation technique [Tanner MA, Wong WH. The calculation of posterior distributions by data augmentation. J Amer Statist Assoc. 1987;82(398):528-540] to circumvent the arduous expressions involving the censored data in posterior inferences. Simulation studies are carried out to assess performance of these methods under different parameter values, with small and large sample sizes, as well as various degrees of censoring. Two real data are analysed for illustrative purpose.
引用
收藏
页码:2411 / 2429
页数:19
相关论文
共 40 条