Spectral Analysis of an Operator Arising in Fluid Dynamics

被引:5
作者
Chugunova, Marina [1 ]
Volkmer, Hans
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 1A1, Canada
关键词
D O I
10.1111/j.1467-9590.2009.00455.x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Eigenmode solutions are very important in stability analysis of dynamical systems. The set of eigenvalues of a non-self-adjoint differential operator originated from the linearization of some Cauchy problem is investigated. It is shown that the eigenvalues are purely imaginary, and that they are related to the eigenvalues of Heun's differential equation. These two results are used to derive the asymptotic behavior of the eigenvalues and to compute them numerically.
引用
收藏
页码:291 / 309
页数:19
相关论文
共 21 条
[1]  
Bailey PB, 2002, OPER THEOR, V132, P87
[2]   Does surface tension stabilize liquid films inside a rotating horizontal cylinder? Part 2: Multidimensional disturbances [J].
Benilov, ES .
STUDIES IN APPLIED MATHEMATICS, 2006, 116 (01) :1-20
[3]   Does surface tension stabilize liquid films inside a rotating horizontal cylinder? [J].
Benilov, ES ;
Kopteva, N ;
O'Brien, SBG .
QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2005, 58 :185-200
[4]   A new type of instability: explosive disturbances in a liquid film inside a rotating horizontal cylinder [J].
Benilov, ES ;
O'Brien, SBG ;
Sazonov, IA .
JOURNAL OF FLUID MECHANICS, 2003, 497 :201-224
[5]  
BOULTON L, 2008, ARXIV08010172V1MATHS
[6]  
CHUGUNOVA M, 2008, ARXIV08032552V2MATHA
[7]  
CHUGUNOVA M, 2008, ARXIV08091555MATHSP
[8]   Spectrum of a non-self-adjoint operator associated with the periodic heat equation [J].
Chugunova, Marina ;
Pelinovsky, Dmitry .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) :970-988
[9]  
Coddington EA., 1985, Theory of Ordinary Differential Equations
[10]  
Davies E. B., 2007, LMS Journal of Computation and Mathematics, V10, P288