A portable fuel processor for hydrogen production from ethanol in a 250 Wel fuel cell system

被引:43
作者
Aicher, Thomas [1 ]
Full, Johannes [1 ]
Schaadt, Achim [1 ]
机构
[1] Fraunhofer Inst Solar Energy Syst, D-79110 Freiburg, Germany
关键词
Ethanol ATR; Shift; Reformer fuel cell system; PEMFC; PARTIAL OXIDATION; CATALYSTS; ELECTROCATALYSTS; OPTIMIZATION; PERFORMANCE;
D O I
10.1016/j.ijhydene.2009.07.064
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper describes the design, manufacturing, operation, and optimization of a mobile ethanol reformer fuel cell system for off-grid power production. The reformer system includes an autothermal reformer, high and low temperature shift reactors, a selective methanation reactor, and a tail gas combustor. A minimum amount of process controls and little internal heat integration kept system architecture simple. Process simulations provided optimal operating parameters, expected hydrogen yield, and system efficiency. The reformer temperature was selected to be 730 degrees C with minimal methane production and no soot formation in the reactor. The oxygen-to-steam ratio is determined by the temperature of feed streams, reforming temperature and heat losses. It was set to be in the order of 0.9. The steam-to-carbon ratio has no impact on carbon monoxide concentration (on a dry basis) in the reformer system product gas, i.e. at the outlet of the selective methanation reactor. Therefore, it was selected to be 2.5, sufficiently high to avoid soot formation in the reforming reactor and yet small enough to keep the size of the water evaporator in a sensible range. The reformer fuel cell system was operated in a lab environment and all reactors were thoroughly investigated. Main focus was to keep the carbon monoxide concentration at the outlet of the selective methanation reactor below 10 ppmv at all times. Furthermore, start-up and shut down procedures were optimized to minimize degradation of the catalysts. Finally, the complete reformer fuel cell system was operated to investigate its performance. System controls allowed fully automated operation of the integrated reformer fuel cell system. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8006 / 8015
页数:10
相关论文
共 19 条
[1]   Hydrogen from hydrocarbon fuels for fuel cells [J].
Ahmed, S ;
Krumpelt, M .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2001, 26 (04) :291-301
[2]   Onboard fuel processor for PEM fuel cell vehicles [J].
Bowers, Brian J. ;
Zhao, Jian L. ;
Ruffo, Michael ;
Khan, Rafey ;
Dattatraya, Druva ;
Dushman, Nathan ;
Beziat, Jean-Christophe ;
Boudjemaa, Fabien .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (10-11) :1437-1442
[3]   Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst [J].
Cai, Weijie ;
Wang, Fagen ;
Van Veen, A. C. ;
Provendier, H. ;
Mirodatos, C. ;
Shen, Wenjie .
CATALYSIS TODAY, 2008, 138 (3-4) :152-156
[4]   Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol:: H2 production for MCFC [J].
Cavallaro, S ;
Chiodo, V ;
Freni, S ;
Mondello, N ;
Frusteri, F .
APPLIED CATALYSIS A-GENERAL, 2003, 249 (01) :119-128
[5]   Reforming catalysts for hydrogen generation in fuel cell applications [J].
Cheekatamarla, Praveen K. ;
Finnerty, C. M. .
JOURNAL OF POWER SOURCES, 2006, 160 (01) :490-499
[6]   Development of an air bleeding technique and specific duration to improve the CO tolerance of proton-exchange membrane fuel cells [J].
Chung, Chen-Chung ;
Chen, Chiun-Hsun ;
Weng, De-Zheng .
APPLIED THERMAL ENGINEERING, 2009, 29 (11-12) :2518-2526
[7]   Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst [J].
de Lima, Sania M. ;
da Cruz, Ivna O. ;
Jacobs, Gary ;
Davis, Burtron H. ;
Mattos, Lisiane V. ;
Noronha, Fabio B. .
JOURNAL OF CATALYSIS, 2008, 257 (02) :356-368
[8]   Renewable hydrogen from ethanol by autothermal reforming [J].
Deluga, GA ;
Salge, JR ;
Schmidt, LD ;
Verykios, XE .
SCIENCE, 2004, 303 (5660) :993-997
[9]   Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimisation [J].
Klouz, V ;
Fierro, V ;
Denton, P ;
Katz, H ;
Lisse, JP ;
Bouvot-Mauduit, S ;
Mirodatos, C .
JOURNAL OF POWER SOURCES, 2002, 105 (01) :26-34
[10]   Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ni catalysts [J].
Liguras, DK ;
Goundani, K ;
Verykios, XE .
JOURNAL OF POWER SOURCES, 2004, 130 (1-2) :30-37