ASYMPTOTICS OF WEIL-PETERSSON GEODESICS I: ENDING LAMINATIONS, RECURRENCE, AND FLOWS

被引:23
作者
Brock, Jeffrey [1 ]
Masur, Howard [2 ]
Minsky, Yair [3 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
[2] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[3] Yale Univ, Dept Math, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
Teichmuller space; Weil-Petersson metric; geodesic flow; ending lamination; recurrence; TEICHMULLER SPACE; GEOMETRY; COMPLEX; CURVES;
D O I
10.1007/s00039-009-0034-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define an ending lamination for a Weil-Petersson geodesic ray. Despite the lack of a natural visual boundary for the Weil-Petersson metric [Bro2], these ending laminations provide an effective boundary theory that encodes much of its asymptotic CAT(0) geometry. In particular, we prove an ending lamination theorem (Theorem 1.1) for the full-measure set of rays that recur to the thick part, and we show that the association of an ending lamination embeds asymptote classes of recurrent rays into the Gromov-boundary of the curve complex C(S). As an application, we establish fundamentals of the topological dynamics of the Weil-Petersson geodesic flow, showing density of closed orbits and topological transitivity.
引用
收藏
页码:1229 / 1257
页数:29
相关论文
共 51 条
[1]   DEGENERATING FAMILIES OF RIEMANN SURFACES [J].
ABIKOFF, W .
ANNALS OF MATHEMATICS, 1977, 105 (01) :29-44
[2]  
[Anonymous], METRIC SPACES NONPOS
[3]  
[Anonymous], 1982, GRUNDLEHREN MATH WIS
[4]  
Bers L., 1974, Ann. of Math. Stud., V79, P43
[5]   A CHARACTERIZATION OF HIGHER RANK SYMMETRIC SPACES VIA BOUNDED COHOMOLOGY [J].
Bestvina, Mladen ;
Fujiwara, Koji .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (01) :11-40
[6]   THE GEOMETRY OF TEICHMULLER SPACE VIA GEODESIC CURRENTS [J].
BONAHON, F .
INVENTIONES MATHEMATICAE, 1988, 92 (01) :139-162
[7]   ENDS OF HYPERBOLIC MANIFOLDS OF DIMENSION-3 [J].
BONAHON, F .
ANNALS OF MATHEMATICS, 1986, 124 (01) :71-158
[8]   The Weil-Petersson visual sphere [J].
Brock, JF .
GEOMETRIAE DEDICATA, 2005, 115 (01) :1-18
[9]   The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores [J].
Brock, JF .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (03) :495-535
[10]  
Buser P., 1992, Geometry and Spectra of Compact Riemann Surfaces. Modern Birkhauser Classics