Solvability in the large for a class of vector fields on the torus

被引:19
作者
Bergamasco, A. R.
da Silva, P. L. Dattori
机构
[1] Univ Sao Paulo, Inst ciencias MAtemat & Computacao, Dept Matemat, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2006年 / 86卷 / 05期
基金
巴西圣保罗研究基金会;
关键词
global solvability; complex vector fields; condition (P); Sussmann orbits; propagation of singularities; bicharacteristics;
D O I
10.1016/j.matpur.2006.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of complex vector fields defined on the two-torus of the form L = partial derivative/partial derivative t + (a(x, t) + ib(x, t))partial derivative/partial derivative x, a, b is an element of C-infinity(T-2; R), b not equivalent to 0. We view L as an operator acting on smooth functions and present conditions for L to have either a closed range or a finite-codimensional range. Our results involve, besides condition (P) of Nirenberg and Treves, the behavior of a + ib near each one-dimensional Sussmann orbit homotopic to the unit circle. One of the main goals of our work is to provide some clarification about the role played by the coefficient a in the validity of the above properties of the range. (C) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:427 / 447
页数:21
相关论文
共 24 条
[1]  
Bergamasco A.P., 2000, MAT CONT, V18, P31
[2]  
Bergamasco AP, 2006, CONTEMP MATH, V400, P11
[3]  
Bergamasco AP, 2005, ANN I FOURIER, V55, P77
[4]   Global solvability for a class of complex vector fields on the two-torus [J].
Bergamasco, AP ;
Cordaro, PD ;
Petronilho, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (5-6) :785-819
[5]   Global properties of a class of overdetermined systems [J].
Bergamasco, AP ;
Nunes, WVL ;
Zani, SL .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (01) :31-64
[6]  
Berhanu S, 1997, J GEOM ANAL, V7, P173
[7]   Normalization of complex-valued planar vector fields which degenerate along a real curve [J].
Cordaro, PD ;
Gong, XH .
ADVANCES IN MATHEMATICS, 2004, 184 (01) :89-118
[8]   CURVES ON 2-MANIFOLDS AND ISOTOPIES [J].
EPSTEIN, DBA .
ACTA MATHEMATICA UPPSALA, 1966, 115 (1-2) :83-&
[9]  
Godin P., 1979, ANN I FOURIER GRENOB, V29, P223
[10]  
HELFFER B, 1978, ANN I FOURIER GRENOB, V28, P221