The atomic-level structure of bandgap engineered double perovskite alloys Cs2AgIn1-xFexCl6

被引:49
作者
Ji, Fuxiang [1 ]
Wang, Feng [1 ]
Kobera, Libor [2 ]
Abbrent, Sabina [2 ]
Brus, Jiri [2 ]
Ning, Weihua [1 ,3 ,4 ]
Gao, Feng [1 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol IFM, SE-58183 Linkoping, Sweden
[2] Czech Acad Sci, Inst Macromol Chem, Heyrovskeho Nam 2, Prague 16206 6, Czech Republic
[3] Nanjing Tech Univ, Key Lab Flexible Elect KLOFE, 30 South Puzhu Rd, Nanjing 211816, Peoples R China
[4] Nanjing Tech Univ, Inst Adv Mat, 30 South Puzhu Rd, Nanjing 211816, Peoples R China
基金
中国国家自然科学基金;
关键词
HYBRID PEROVSKITES; HALIDE PEROVSKITES; PHASE SEGREGATION; CS2AGBIBR6;
D O I
10.1039/d0sc05264g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although lead-free halide double perovskites are considered as promising alternatives to lead halide perovskites for optoelectronic applications, state-of-the-art double perovskites are limited by their large bandgap. The doping/alloying strategy, key to bandgap engineering in traditional semiconductors, has also been employed to tune the bandgap of halide double perovskites. However, this strategy has yet to generate new double perovskites with suitable bandgaps for practical applications, partially due to the lack of fundamental understanding of how the doping/alloying affects the atomic-level structure. Here, we take the benchmark double perovskite Cs2AgInCl6 as an example to reveal the atomic-level structure of double perovskite alloys (DPAs) Cs2AgIn1-xFexCl6 (x = 0-1) by employing solid-state nuclear magnetic resonance (ssNMR). The presence of paramagnetic alloying ions (e.g. Fe3+ in this case) in double perovskites makes it possible to investigate the nuclear relaxation times, providing a straightforward approach to understand the distribution of paramagnetic alloying ions. Our results indicate that paramagnetic Fe3+ replaces diamagnetic In3+ in the Cs2AgInCl6 lattice with the formation of [FeCl6](3-)center dot[AgCl6](5-) domains, which show different sizes and distribution modes in different alloying ratios. This work provides new insights into the atomic-level structure of bandgap engineered DPAs, which is of critical significance in developing efficient optoelectronic/spintronic devices.
引用
收藏
页码:1730 / 1735
页数:6
相关论文
共 28 条
[1]   Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR [J].
Alanazi, Anwar Q. ;
Kubicki, Dominik J. ;
Prochowicz, Daniel ;
Alharbi, Essa A. ;
Bouduban, Marine E. F. ;
Jahanbakhshi, Farzaneh ;
Mladenovic, Marko ;
Milic, Jovana V. ;
Giordano, Fabrizio ;
Ren, Dan ;
Alyamani, Ahmed Y. ;
Albrithen, Hamad ;
Albadri, Abdulrahman ;
Alotaibi, Mohammad Hayal ;
Moser, Jacques-E. ;
Zakeeruddin, Shaik M. ;
Rothlisberger, Ursula ;
Emsley, Lyndon ;
Gratzel, Michael .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (44) :17659-17669
[2]   BAND-GAP NARROWING IN HEAVILY DOPED MANY-VALLEY SEMICONDUCTORS [J].
BERGGREN, KF ;
SERNELIUS, BE .
PHYSICAL REVIEW B, 1981, 24 (04) :1971-1986
[3]   Bandgap Engineering of Lead-Free Double Perovskite Cs2AgBiBr6 through Trivalent Metal Alloying [J].
Du, Ke-zhao ;
Meng, Weiwei ;
Wang, Xiaoming ;
Yan, Yanfa ;
Mitzi, David B. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (28) :8158-8162
[4]   S-Doped ZnSnO3 Nanoparticles with Narrow Band Gaps for Photocatalytic Wastewater Treatment [J].
Guo, Runjiang ;
Tian, Ran ;
Shi, Dongliang ;
Li, Hua ;
Liu, Hezhou .
ACS APPLIED NANO MATERIALS, 2019, 2 (12) :7755-7765
[5]   Intercalation of Coordinatively Unsaturated FeIII Ion within Interpenetrated Metal-Organic Framework MOF-5 [J].
Holmberg, Rebecca J. ;
Burns, Thomas ;
Greer, Samuel M. ;
Kobera, Libor ;
Stoian, Sebastian A. ;
Korobkov, Ilia ;
Hill, Stephen ;
Bryce, David L. ;
Woo, Tom K. ;
Murugesu, Muralee .
CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (23) :7711-7715
[6]   A new approach in 1D and 2D 13C high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning [J].
Ishii, Y ;
Wickramasinghe, NP ;
Chimon, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (12) :3438-3439
[7]   Compositional engineering of perovskite materials for high-performance solar cells [J].
Jeon, Nam Joong ;
Noh, Jun Hong ;
Yang, Woon Seok ;
Kim, Young Chan ;
Ryu, Seungchan ;
Seo, Jangwon ;
Seok, Sang Il .
NATURE, 2015, 517 (7535) :476-+
[8]   Lead-Free Halide Double Perovskite Cs2AgBiBr6with Decreased Band Gap [J].
Ji, Fuxiang ;
Klarbring, Johan ;
Wang, Feng ;
Ning, Weihua ;
Wang, Linqin ;
Yin, Chunyang ;
Figueroa, Jose Silvestre Mendoza ;
Christensen, Christian Kolle ;
Etter, Martin ;
Ederth, Thomas ;
Sun, Licheng ;
Simak, Sergei, I ;
Abrikosov, Igor A. ;
Gao, Feng .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (35) :15191-15194
[9]   A balanced cation exchange reaction toward highly uniform and pure phase FA1-xMAxPbI3 perovskite films [J].
Ji, Fuxiang ;
Wang, Li ;
Pang, Shuping ;
Gao, Peng ;
Xu, Hongxia ;
Xie, Guangwen ;
Zhang, Jidong ;
Cui, Guanglei .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (37) :14437-14443
[10]   Tailorable Indirect to Direct Band-Gap Double Perovskites with Bright White-Light Emission: Decoding Chemical Structure Using Solid-State NMR [J].
Karmakar, Abhoy ;
Bernard, Guy M. ;
Meldrum, Alkiviathes ;
Oliynyk, Anton O. ;
Michaelis, Vladimir K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (24) :10780-10793