Low-Temperature Substrate Bonding Technology for High Power GaN-on-Diamond HEMTs

被引:0
作者
Chu, Kenneth K. [1 ]
Chao, Pane C. [1 ]
Diaz, Jose A. [1 ]
Yurovchak, Thomas [1 ]
Creamer, Carlton T. [1 ]
Sweetland, Scott [1 ]
Kallaher, Raymond L. [2 ]
McGray, Craig [2 ]
机构
[1] BAE Syst, Nashua, NH 03060 USA
[2] Modern Microsyst Inc, Silver Spring, MD 20904 USA
来源
2014 LESTER EASTMAN CONFERENCE ON HIGH PERFORMANCE DEVICES (LEC) | 2014年
关键词
GaN-on-diamond; high-electron-mobility transistor (HEMT); epitaxial transfer; substrate bonding; microwave power; thermal management;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We report the first demonstration of GaN-on-diamond RF power transistors produced by low-temperature substrate bonding technology. GaN high-electron-mobility transistors (HEMTs) are lifted from the original SiC substrate post fabrication and transferred onto high-quality polycrystalline diamond with thermal conductivity of 1,800 - 2,000 W/mK. Resulting GaN-on-diamond HEMTs demonstrated DC current density of 1.0A/mm, transconductance of 330mS/mm, and RF output power density of 6.0W/mm at 10GHz (CW). Finite-element thermal modeling indicates GaN-on-diamond technology based on low-temperature substrate bonding is capable of 3X increased power per area compared to conventional GaN-on-SiC devices.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Room-temperature bonding of GaN and diamond via a SiC layer
    Kobayashi, Ayaka
    Tomiyama, Hazuki
    Ohno, Yutaka
    Shimizu, Yasuo
    Nagai, Yasuyoshi
    Shigekawa, Naoteru
    Liang, Jianbo
    FUNCTIONAL DIAMOND, 2022, 2 (01): : 142 - 150
  • [32] Room temperature bonding of GaN and diamond substrates via atomic layer
    Matsumae, Takashi
    Kurashima, Yuichi
    Takagi, Hideki
    Shirayanagi, Yusuke
    Hiza, Shuichi
    Nishimura, Kunihiko
    Higurashi, Eiji
    SCRIPTA MATERIALIA, 2022, 215
  • [33] GaN-On-Diamond HEMT Technology With TAVG=176 °C at PDC, max=56 W/mm Measured by Transient Thermoreflectance Imaging
    Tadjer, Marko J.
    Anderson, Travis J.
    Ancona, Mario G.
    Raad, Peter E.
    Komarov, Pavel
    Bai, Tingyu
    Gallagher, James C.
    Koehler, Andrew D.
    Goorsky, Mark S.
    Francis, Daniel A.
    Hobart, Karl D.
    Kub, Fritz J.
    IEEE ELECTRON DEVICE LETTERS, 2019, 40 (06) : 881 - 884
  • [34] Influence of barrier thickness on the high-power performance of AlGaN/GaN HEMTs
    Tilak, V
    Green, B
    Kaper, V
    Kim, H
    Prunty, T
    Smart, J
    Shealy, J
    Eastman, L
    IEEE ELECTRON DEVICE LETTERS, 2001, 22 (11) : 504 - 506
  • [35] High-power GaN MESFET on sapphire substrate
    Gaquiere, C
    Trassaert, S
    Boudart, B
    Crosnier, Y
    IEEE MICROWAVE AND GUIDED WAVE LETTERS, 2000, 10 (01): : 19 - 20
  • [36] AlGaN/GaN/3C-SiC on diamond HEMTs with thick nitride layers prepared by bonding-first process
    Kagawa, Ryo
    Kawamura, Keisuke
    Sakaida, Yoshiki
    Ouchi, Sumito
    Uratani, Hiroki
    Shimizu, Yasuo
    Ohno, Yutaka
    Nagai, Yasuyoshi
    Liang, Jianbo
    Shigekawa, Naoteru
    APPLIED PHYSICS EXPRESS, 2022, 15 (04)
  • [37] AlGaN/GaN HEMTs on (001) Silicon Substrate With Power Density Performance of 2.9 W/mm at 10 GHz
    Gerbedoen, Jean-Claude
    Soltani, Ali
    Joblot, Sylvain
    De Jaeger, Jean-Claude
    Gaquiere, Christophe
    Cordier, Yvon
    Semond, Fabrice
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (07) : 1497 - 1503
  • [38] Optimization of π - Gate AlGaN/AlN/GaN HEMTs for Low Noise and High Gain Applications
    Sehra, Khushwant
    Kumari, Vandana
    Gupta, Mridula
    Mishra, Meena
    Rawal, D. S.
    Saxena, Manoj
    SILICON, 2022, 14 (02) : 393 - 404
  • [39] Novel packaging design for high-power GaN-on-Si high electron mobility transistors (HEMTs)
    Cheng, Stone
    Chou, Po-Chien
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 66 : 63 - 70
  • [40] Quantifying Temperature-Dependent Substrate Loss in GaN-on-Si RF Technology
    Chandrasekar, Hareesh
    Uren, Michael J.
    Casbon, Michael A.
    Hirshy, Hassan
    Eblabla, Abdalla
    Elgaid, Khaled
    Pomeroy, James W.
    Tasker, Paul J.
    Kuball, Martin
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (04) : 1681 - 1687