Analyzing network diversity of cell-cell interactions in COVID-19 using single-cell transcriptomics

被引:3
|
作者
Wang, Xinyi [1 ]
Almet, Axel A. [1 ,2 ]
Nie, Qing [1 ,2 ,3 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Calif Irvine, NSF Simons Ctr Multiscale Cell Fate Res, Irvine, CA 92697 USA
[3] Univ Calif Irvine, Dept Dev & Cell Biol, Irvine, CA 92697 USA
关键词
network analysis; single-cell; cell-cell interactions; diversity; COVID-19; COMMUNICATION; LANDSCAPE;
D O I
10.3389/fgene.2022.948508
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Cell-cell interactions (CCI) play significant roles in manipulating biological functions of cells. Analyzing the differences in CCI between healthy and diseased conditions of a biological system yields greater insight than analyzing either conditions alone. There has been a recent and rapid growth of methods to infer CCI from single-cell RNA-sequencing (scRNA-seq), revealing complex CCI networks at a previously inaccessible scale. However, the majority of current CCI analyses from scRNA-seq data focus on direct comparisons between individual CCI networks of individual samples from patients, rather than "group-level " comparisons between sample groups of patients comprising different conditions. To illustrate new biological features among different disease statuses, we investigated the diversity of key network features on groups of CCI networks, as defined by different disease statuses. We considered three levels of network features: node level, as defined by cell type; node-to-node level; and network level. By applying these analysis to a large-scale single-cell RNA-sequencing dataset of coronavirus disease 2019 (COVID-19), we observe biologically meaningful patterns aligned with the progression and subsequent convalescence of COVID-19.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis
    Robert Lorenz Chua
    Soeren Lukassen
    Saskia Trump
    Bianca P. Hennig
    Daniel Wendisch
    Fabian Pott
    Olivia Debnath
    Loreen Thürmann
    Florian Kurth
    Maria Theresa Völker
    Julia Kazmierski
    Bernd Timmermann
    Sven Twardziok
    Stefan Schneider
    Felix Machleidt
    Holger Müller-Redetzky
    Melanie Maier
    Alexander Krannich
    Sein Schmidt
    Felix Balzer
    Johannes Liebig
    Jennifer Loske
    Norbert Suttorp
    Jürgen Eils
    Naveed Ishaque
    Uwe Gerd Liebert
    Christof von Kalle
    Andreas Hocke
    Martin Witzenrath
    Christine Goffinet
    Christian Drosten
    Sven Laudi
    Irina Lehmann
    Christian Conrad
    Leif-Erik Sander
    Roland Eils
    Nature Biotechnology, 2020, 38 : 970 - 979
  • [32] Bronchoalveolar lavage single-cell transcriptomics reveals immune dysregulations driving COVID-19 severity
    Asaba, Clinton Njinju
    Bitazar, Razieh
    Labonte, Patrick
    Bukong, Terence Ndonyi
    PLOS ONE, 2025, 20 (02):
  • [33] Single-Cell Transcriptomics Reveals Cellular Heterogeneity and Complex Cell-Cell Communication Networks in the Mouse Cornea
    Wu, Yueh-Feng
    Chang, Nai-Wen
    Chu, Li-An
    Liu, Hsin-Yu
    Zhou, Yu-Xian
    Pai, Yun-Lin
    Yu, Yu-Sheng
    Kuan, Chen-Hsiang
    Wu, Yu-Ching
    Lin, Sung-Jan
    Tan, Hsin-Yuan
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (13)
  • [34] SINGLE-CELL SPATIAL TRANSCRIPTOMICS OF THE KIDNEY IN HEALTH AND DISEASE DEFINES INJURY-SPECIFIC DOMAINS AND IDENTIFIES NOVEL CELL-CELL INTERACTIONS
    Gerhardt, Louisa
    Polonsky, Michal
    Zheng, Shiwei
    Yun, Jina
    Koppitch, Kari
    Yuan, Guocheng
    Mcmahon, Andrew P.
    Cai, Long
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2023, 38 : I180 - I180
  • [35] Single-cell systems biology, COVID-19, and vaccination
    Tarnok, Attila
    CYTOMETRY PART A, 2021, 99 (05) : 427 - 428
  • [36] Development of a Single-Cell Spatial Metabolomics Method for the Characterization of Cell-Cell Metabolic Interactions
    Zhang, Yaqi
    Chen, Panpan
    Geng, Haoyuan
    Li, Min
    Chen, Shiping
    Ma, Bangzhen
    Ma, Yan
    Lai, Jianjun
    Cui, Xiaoqing
    Chong, Wei
    Chen, Hao
    Wang, Xiao
    Sun, Chenglong
    ANALYTICAL CHEMISTRY, 2025,
  • [37] Construction of a Human Cell Landscape of COVID-19 Infection at Single-cell Level
    He, Jian
    Lin, Yingxin
    Meng, Mei
    Li, Jingquan
    Yang, Jean Y. H.
    Wang, Hui
    AGING AND DISEASE, 2021, 12 (03): : 705 - 709
  • [38] Decoding uterine leiomyoma tumorigenesis using single-cell transcriptomics and single-cell proteomics
    Machado-Lopez, A.
    Perez-Moraga, R.
    Punzon-Jimenez, P.
    Llera-Oyola, J.
    Galvez-Viedma, M.
    Grases, D.
    Aragon-Fernandez, P.
    Satorres, E.
    Roson, B.
    Schoof, E. M.
    Porta-Pardo, E.
    Simon, C.
    Mas, A.
    HUMAN REPRODUCTION, 2023, 38
  • [39] Inferring cell-cell communication at single-cell resolution
    Wilk, Aaron J.
    Blish, Catherine A.
    NATURE BIOTECHNOLOGY, 2024, 42 (03) : 390 - 391
  • [40] COVID-19 severity correlates with airway epithelium-immune cell interactions identified by single-cell analysis
    Chua, Robert Lorenz
    Lukassen, Soeren
    Trump, Saskia
    Hennig, Bianca P.
    Wendisch, Daniel
    Pott, Fabian
    Debnath, Olivia
    Thuermann, Loreen
    Kurth, Florian
    Voelker, Maria Theresa
    Kazmierski, Julia
    Timmermann, Bernd
    Twardziok, Sven
    Schneider, Stefan
    Machleidt, Felix
    Mueller-Redetzky, Holger
    Maier, Melanie
    Krannich, Alexander
    Schmidt, Sein
    Balzer, Felix
    Liebig, Johannes
    Loske, Jennifer
    Suttorp, Norbert
    Eils, Juergen
    Ishaque, Naveed
    Liebert, Uwe Gerd
    von Kalle, Christof
    Hocke, Andreas
    Witzenrath, Martin
    Goffinet, Christine
    Drosten, Christian
    Laudi, Sven
    Lehmann, Irina
    Conrad, Christian
    Sander, Leif-Erik
    Eils, Roland
    NATURE BIOTECHNOLOGY, 2020, 38 (08) : 970 - +