Global optimization of solar power tower systems using a Monte Carlo algorithm: Application to a redesign of the PS10 solar thermal power plant

被引:45
作者
Farges, O. [1 ,2 ,3 ]
Bezian, J. J. [3 ]
El Hafi, M. [3 ]
机构
[1] Univ Lorraine, LEMTA, UMR 7563, F-54500 Vandoeuvre Les Nancy, France
[2] CNRS, LEMTA, UMR 7563, Vandoeuvre Les Nancy, France
[3] Univ Federale Toulouse Midi Pyrenees, Mines Albi, CNRS, UMR 5302,Ctr RAPSODEE, Campus Jarlard, F-81013 Albi 09, CT, France
关键词
Global optimization; Solar power tower; Lifetime performance; Heliostat field layout; CENTRAL RECEIVER SYSTEMS; HELIOSTAT FIELD LAYOUT; METHODOLOGY;
D O I
10.1016/j.renene.2017.12.028
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
There is a need to enhance the performance of Solar Power Tower (SPT) systems in view of their significant capital costs. In this context, the preliminary design step is of great interest as improvements here can reduce the global cost. This paper presents an optimization method that approaches optimal SPT system design through the coupling of a Particle Swarm Optimization algorithm and a Monte Carlo algorithm, in order to assess both the yearly heliostat field optical efficiency and the thermal energy collected annually by an SPT system. This global optimization approach is then validated on a well-known SPT system, ie the PS10 Solar Thermal Power plant. First, the direct model is compared to in-situ measurements and simulation results. Then, the PS10 heliostat field is redesigned using the optimization tool. This redesign step leads to an annual gain between 3.34% and 23.5% in terms of the thermal energy collected and up to about 9% in terms of the heliostat field optical efficiency from case to case. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:345 / 353
页数:9
相关论文
共 23 条
[1]  
Blair N., 2014, TECH REP
[2]  
BrightSource, 2015, TECH REP
[3]   A heuristic method for simultaneous tower and pattern-free field optimization on solar power systems [J].
Carrizosa, E. ;
Dominguez-Bravo, C. ;
Fernandez-Cara, E. ;
Quero, M. .
COMPUTERS & OPERATIONS RESEARCH, 2015, 57 :109-122
[4]   Monte Carlo advances and concentrated solar applications [J].
Delatorre, J. ;
Baud, G. ;
Bezian, J. J. ;
Blanco, S. ;
Caliot, C. ;
Cornet, J. F. ;
Coustet, C. ;
Dauchet, J. ;
El Hafi, M. ;
Eymet, V. ;
Fournier, R. ;
Gautrais, J. ;
Gourmel, O. ;
Joseph, D. ;
Meilhac, N. ;
Pajot, A. ;
Paulin, M. ;
Perez, P. ;
Piaud, B. ;
Roger, M. ;
Rolland, J. ;
Veynandt, F. ;
Weitz, S. .
SOLAR ENERGY, 2014, 103 :653-681
[5]   Life-time integration using Monte Carlo Methods when optimizing the design of concentrated solar power plants [J].
Farges, O. ;
Bezian, J. J. ;
Bru, H. ;
El Hafi, M. ;
Fournier, R. ;
Spiesser, C. .
SOLAR ENERGY, 2015, 113 :57-62
[6]  
Hoogenboom JE, 2008, NUCL SCI ENG, V160, P1
[7]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[8]  
Kolb G, 2007, TECH REP
[9]   Heliostat field optimization: A new computationally efficient model and biomimetic layout [J].
Noone, Corey J. ;
Torrilhon, Manuel ;
Mitsos, Alexander .
SOLAR ENERGY, 2012, 86 (02) :792-803
[10]  
Osuna R, 2004, P 12 SOLARPACES INT, P78