Scaling in Singular Perturbation Problems: Blowing Up a Relaxation Oscillator

被引:37
作者
Kosiuk, Ilona [1 ]
Szmolyan, Peter [2 ]
机构
[1] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[2] TU Wien, Inst Angew & Numer Math, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
slow-fast dynamics; glycolytic oscillations; relaxation oscillations; geometric singular perturbation theory; blow-up method; GLYCOLYTIC OSCILLATIONS; TURNING-POINTS; MODEL; CELLS; EQUATIONS; KINETICS; R-3;
D O I
10.1137/100814470
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A detailed geometric analysis of the Goldbeter-Lefever model of glycolytic oscillations is given. In suitably scaled variables the governing equations are a planar system of ordinary differential equations depending singularly on two small parameters epsilon and delta. In [L. Segel and A. Goldbeter, J. Math. Biol., 32 (1994), pp. 147-160] it was argued that a limit cycle of relaxation type exists for epsilon <= delta <= 1. The existence of this limit cycle is proved by analyzing the problem in the spirit of geometric singular perturbation theory. The degeneracies of the limiting problem corresponding to (epsilon, delta) = (0, 0) are resolved by a novel variant of the blow-up method. It is shown that repeated blow-ups lead to a clear geometric picture of this fairly complicated two-parameter multiscale problem.
引用
收藏
页码:1307 / 1343
页数:37
相关论文
共 34 条
[1]   Metabolic and electrical oscillations: partners in controlling pulsatile insulin secretion [J].
Bertram, Richard ;
Sherman, Arthur ;
Satin, Leslie S. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2007, 293 (04) :E890-E900
[2]   WAVEFORM GENERATION BY ENZYMATIC OSCILLATORS [J].
CHANCE, B ;
PYE, K ;
HIGGINS, J .
IEEE SPECTRUM, 1967, 4 (08) :79-&
[3]   OSCILLATIONS OF LACTATE RELEASED FROM ISLETS OF LANGERHANS - EVIDENCE FOR OSCILLATORY GLYCOLYSIS IN BETA-CELLS [J].
CHOU, HF ;
BERMAN, N ;
IPP, E .
AMERICAN JOURNAL OF PHYSIOLOGY, 1992, 262 (06) :E800-E805
[4]  
Cole J. D, 1996, APPL MATH SCI, V114
[5]   Canard solutions at non-generic turning points [J].
De Maesschalck, P ;
Dumortier, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (05) :2291-2334
[6]   Multiple canard cycles in generalized Lienard equations [J].
Dumortier, F ;
Roussarie, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 174 (01) :1-29
[7]  
Dumortier F., 1996, MEM AM MATH SOC, V121
[8]   The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off [J].
Dumortier, Freddy ;
Popovic, Nikola ;
Kaper, Tasso J. .
NONLINEARITY, 2007, 20 (04) :855-877
[10]  
FRENKEL BR, 1968, ARCH BIOCHEM BIOPHYS, V125, P151