Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

被引:232
作者
Salathe, Y. [1 ]
Mondal, M. [1 ]
Oppliger, M. [1 ]
Heinsoo, J. [1 ]
Kurpiers, P. [1 ]
Potocnik, A. [1 ]
Mezzacapo, A. [2 ]
Heras, U. Las [2 ]
Lamata, L. [2 ]
Solano, E. [2 ,3 ]
Filipp, S. [1 ]
Wallraff, A. [1 ]
机构
[1] ETH, Dept Phys, CH-8093 Zurich, Switzerland
[2] Univ Basque Country UPV EHU, Dept Phys Chem, E-48080 Bilbao, Spain
[3] Ikerbasque, Basque Fdn Sci, Bilbao 48013, Spain
基金
瑞士国家科学基金会;
关键词
CAVITY; PROPAGATION; ALGORITHMS; DYNAMICS; QUBITS; PHOTON; STATES;
D O I
10.1103/PhysRevX.5.021027
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.
引用
收藏
页数:12
相关论文
共 71 条
[1]  
Anderson P.W., 1997, The Theory of Superconductivity in the High-Tc Cuprate
[2]  
[Anonymous], Quantum Phase Transitions-Rosenbaum Lab, DOI DOI 10.1017/CBO9780511973765
[3]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/nphys2253, 10.1038/NPHYS2253]
[4]   Spin liquids in frustrated magnets [J].
Balents, Leon .
NATURE, 2010, 464 (7286) :199-208
[5]  
Barends R, ARXIV 1501 07703
[6]   Wilson Fermions and Axion Electrodynamics in Optical Lattices [J].
Bermudez, A. ;
Mazza, L. ;
Rizzi, M. ;
Goldman, N. ;
Lewenstein, M. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW LETTERS, 2010, 105 (19)
[7]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[8]   Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics [J].
Bianchetti, R. ;
Filipp, S. ;
Baur, M. ;
Fink, J. M. ;
Goeppl, M. ;
Leek, P. J. ;
Steffen, L. ;
Blais, A. ;
Wallraff, A. .
PHYSICAL REVIEW A, 2009, 80 (04)
[9]   Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation [J].
Blais, A ;
Huang, RS ;
Wallraff, A ;
Girvin, SM ;
Schoelkopf, RJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062320-1
[10]  
Blatt R, 2012, NAT PHYS, V8, P277, DOI [10.1038/nphys2252, 10.1038/NPHYS2252]