Biosynthesis of Silver Nanoparticles by Geotricum sp.

被引:40
作者
Jebali, Ali [1 ]
Ramezani, Fatemeh [1 ]
Kazemi, Bahram [1 ]
机构
[1] Shahid Beheshti Univ Med Sci, Cellular & Mol Biol Res Ctr, Tehran, Iran
关键词
Silver; Nanoparticle; Biosynthesis; Geotricum sp; BIOLOGICAL SYNTHESIS; METAL NANOPARTICLES;
D O I
10.1007/s10876-011-0375-5
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Nanoparticles are usually 1-100 nm in each spatial dimension considered as building blocks of the next generation of optoelectronics, electronics, and various chemical and biochemical sensors. In the synthesis of nanoparticles use of microorganisms emerges as an eco-friendly and exciting approach that reduce waste products (ultimately leading to atomically precise molecular manufacturing with zero waste); the use of nanomaterials as catalysts for greater efficiency in current manufacturing processes by minimizing or eliminating the use of toxic materials (green chemistry principles); the use of nanomaterials and nanodevices to reduce pollution (e. g. water and air filters); and the use of nanomaterials for more efficient alternative energy production (e. g. solar and fuel cells). Fungi have many advantages for nanoparticle synthesis compared with other organisms. In this study, Geotricum sp. found to successfully produce Ag nanoparticles. Geotricum sp. was grown in SDA (Sabro Dextrose Agar) medium at 25 +/- 1 degrees C for 96 h. The mycelia were used to convert silver nitrate solution into nano-silver. Silver nanoparticles were synthesized using these fungi (Geotricum sp.) extracellularly. UV-VIS spectroscopy, Atomic Force Microscopy (AFM) and Scanning Electron Microscopy images shows the nanoparticle formation in the medium. Energy-dispersive X-ray spectroscopy (EDX) also confirmed that silver nanoparticles in the range of 30-50 nm were synthesized extracellularly. FTIR analyses confirmed the presence of amide (I) and (II) bands of protein as capping and stabilizing agent on the surface of nanoparticles.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 20 条
[1]   Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum [J].
Ahmad, A ;
Mukherjee, P ;
Senapati, S ;
Mandal, D ;
Khan, MI ;
Kumar, R ;
Sastry, M .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2003, 28 (04) :313-318
[2]   Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus [J].
Bfilainsa, KC ;
D'Souza, SF .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2006, 47 (02) :160-164
[3]   Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains [J].
Durán N. ;
Marcato P.D. ;
Alves O.L. ;
De Souza G.I.H. ;
Esposito E. .
Journal of Nanobiotechnology, 3 (1)
[4]   Biosynthesis of metal and oxide nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets [J].
Jha, Anal K. ;
Prasad, K. .
BIOTECHNOLOGY JOURNAL, 2010, 5 (03) :285-291
[5]   Biosynthesis of silver and gold nanoparticles using Brevibacterium casei [J].
Kalishwaralal, Kalimuthu ;
Deepak, Venkataraman ;
Pandian, SureshBabu Ram Kumar ;
Kottaisamy, Muniasamy ;
BarathManiKanth, Selvaraj ;
Kartikeyan, Bose ;
Gurunathan, Sangiliyandi .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2010, 77 (02) :257-262
[6]  
Karbasian M., 2008, American Journal of Agricultural and Biological Sciences, V3, P433
[7]   The use of microorganisms for the formation of metal nanoparticles and their application [J].
Mandal, D ;
Bolander, ME ;
Mukhopadhyay, D ;
Sarkar, G ;
Mukherjee, P .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2006, 69 (05) :485-492
[8]   Biosynthesis of nanoparticles: technological concepts and future applications [J].
Mohanpuria, Prashant ;
Rana, Nisha K. ;
Yadav, Sudesh Kumar .
JOURNAL OF NANOPARTICLE RESEARCH, 2008, 10 (03) :507-517
[9]   Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis [J].
Mukherjee, P ;
Ahmad, A ;
Mandal, D ;
Senapati, S ;
Sainkar, SR ;
Khan, MI ;
Parishcha, R ;
Ajaykumar, PV ;
Alam, M ;
Kumar, R ;
Sastry, M .
NANO LETTERS, 2001, 1 (10) :515-519
[10]  
Murali S., 2003, CURR SCI, V85, P2