New Lower Bounds on Circuit Size of Multi-output Functions

被引:4
作者
Demenkov, Evgeny [1 ]
Kulikov, Alexander S. [2 ]
Melanich, Olga [2 ]
Mihajlin, Ivan [2 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
[2] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
基金
俄罗斯基础研究基金会;
关键词
Circuit complexity; Lower bounds; Boolean functions; Gate elimination; BOOLEAN FUNCTIONS; COMBINATIONAL COMPLEXITY;
D O I
10.1007/s00224-014-9590-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let B (n, m) be the set of all Boolean functions from {0, 1}(n) to {0, 1}(m) , B-n = B-n,B- 1 and U-2 = B-2 \ {circle plus, equivalent to}. In this paper, we prove the following two new lower bounds on the circuit size over U-2. 1. A lower bound C-U2 (f) >= 5n - o(n) for a linear function f is an element of B-n-1,B-log (n) . The lower bound follows from the following more general result: for any matrix A is an element of {0, 1}(mxn) with n pairwise different non-zero columns and b is an element of {0, 1}(m) , C(U2()Ax circle plus b) >= 5(n - m). 2. A lower bound C-U2 (f) >= 7n - o(n) for f is an element of B-n,B-n. Again, this is a consequence of the following result: for any f is an element of B-n satisfying a certain simple property, C-U2 (g(f)) >= min{C-U2 (f vertical bar(xi=a, xj=b)) : x(i) not equal x(j), a, b, is an element of{0, 1}} + 2n - Theta(1) where g(f) is an element of B-n,B- n is defined as follows: g(f) = (f circle plus x(1), ... , f circle plus x(n)) (to get a 7n - o(n) lower bound it remains to plug in a known function f is an element of B-n,B- 1 with C-U2 (f) >= 5n - o(n)).
引用
收藏
页码:630 / 642
页数:13
相关论文
共 50 条
  • [41] Average-Case Lower Bounds for Formula Size
    Komargodski, Ilan
    Raz, Ran
    [J]. STOC'13: PROCEEDINGS OF THE 2013 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2013, : 171 - 180
  • [42] Lower bounds for the size of deterministic unranked tree automata
    Piao, Xiaoxue
    Salomaa, Kai
    [J]. THEORETICAL COMPUTER SCIENCE, 2012, 454 : 231 - 239
  • [43] Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP
    Murray, Cody
    Williams, Ryan
    [J]. STOC'18: PROCEEDINGS OF THE 50TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2018, : 890 - 901
  • [44] Prediction from Partial Information and Hindsight, with Application to Circuit Lower Bounds
    Or Meir
    Avi Wigderson
    [J]. computational complexity, 2019, 28 : 145 - 183
  • [45] Functional Lower Bounds for Arithmetic Circuits and Connections to Boolean Circuit Complexity
    Forbes, Michael A.
    Kumar, Mrinal
    Saptharishi, Ramprasad
    [J]. 31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016), 2016, 50
  • [46] On proving circuit lower bounds against the polynomial-time hierarchy
    Cai, JY
    Watanabe, O
    [J]. SIAM JOURNAL ON COMPUTING, 2004, 33 (04) : 984 - 1009
  • [47] Prediction from Partial Information and Hindsight, with Application to Circuit Lower Bounds
    Meir, Or
    Wigderson, Avi
    [J]. COMPUTATIONAL COMPLEXITY, 2019, 28 (02) : 145 - 183
  • [48] On lower bounds for integration of multivariate permutation-invariant functions
    Weimar, Markus
    [J]. JOURNAL OF COMPLEXITY, 2014, 30 (01) : 87 - 97
  • [49] Lower Bounds for Higher Moments of the Twisted L-functions
    Guohua Chen
    Yanru Jiang
    [J]. Frontiers of Mathematics, 2023, 18 : 683 - 696
  • [50] Lower Bounds for Higher Moments of the Twisted L-functions
    Chen, Guohua
    Jiang, Yanru
    [J]. FRONTIERS OF MATHEMATICS, 2023, 18 (03): : 683 - 696