New Lower Bounds on Circuit Size of Multi-output Functions

被引:4
作者
Demenkov, Evgeny [1 ]
Kulikov, Alexander S. [2 ]
Melanich, Olga [2 ]
Mihajlin, Ivan [2 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
[2] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
基金
俄罗斯基础研究基金会;
关键词
Circuit complexity; Lower bounds; Boolean functions; Gate elimination; BOOLEAN FUNCTIONS; COMBINATIONAL COMPLEXITY;
D O I
10.1007/s00224-014-9590-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let B (n, m) be the set of all Boolean functions from {0, 1}(n) to {0, 1}(m) , B-n = B-n,B- 1 and U-2 = B-2 \ {circle plus, equivalent to}. In this paper, we prove the following two new lower bounds on the circuit size over U-2. 1. A lower bound C-U2 (f) >= 5n - o(n) for a linear function f is an element of B-n-1,B-log (n) . The lower bound follows from the following more general result: for any matrix A is an element of {0, 1}(mxn) with n pairwise different non-zero columns and b is an element of {0, 1}(m) , C(U2()Ax circle plus b) >= 5(n - m). 2. A lower bound C-U2 (f) >= 7n - o(n) for f is an element of B-n,B-n. Again, this is a consequence of the following result: for any f is an element of B-n satisfying a certain simple property, C-U2 (g(f)) >= min{C-U2 (f vertical bar(xi=a, xj=b)) : x(i) not equal x(j), a, b, is an element of{0, 1}} + 2n - Theta(1) where g(f) is an element of B-n,B- n is defined as follows: g(f) = (f circle plus x(1), ... , f circle plus x(n)) (to get a 7n - o(n) lower bound it remains to plug in a known function f is an element of B-n,B- 1 with C-U2 (f) >= 5n - o(n)).
引用
收藏
页码:630 / 642
页数:13
相关论文
共 50 条
  • [21] A geometric approach to quantum circuit lower bounds
    Nielsen, MA
    QUANTUM INFORMATION & COMPUTATION, 2006, 6 (03) : 213 - 262
  • [22] Monotone Circuit Lower Bounds from Resolution
    Garg, Ankit
    Goos, Mika
    Kamath, Pritish
    Sokolov, Dmitry
    THEORY OF COMPUTING, 2020, 16 (16)
  • [23] Diagonal circuit identity testing and lower bounds
    Saxena, Nitin
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 60 - 71
  • [24] Lower bounds of second-order nonlinearity of Boolean functions
    Li X.-L.
    Hu Y.-P.
    Gao J.-T.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2010, 38 (06): : 95 - 99
  • [25] On the lower bounds of the second order nonlinearities of some Boolean functions
    Gangopadhyay, Sugata
    Sarkar, Sumanta
    Telang, Ruchi
    INFORMATION SCIENCES, 2010, 180 (02) : 266 - 273
  • [26] New algorithms and lower bounds for monotonicity testing
    Chen, Xi
    Servedio, Rocco A.
    Tan, Li-Yang
    2014 55TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2014), 2014, : 286 - 295
  • [27] OPTIMAL LOWER BOUNDS ON THE DEPTH OF POLYNOMIAL-SIZE THRESHOLD CIRCUITS FOR SOME ARITHMETIC FUNCTIONS
    WEGENER, I
    INFORMATION PROCESSING LETTERS, 1993, 46 (02) : 85 - 87
  • [28] Monotone Circuit Lower Bounds from Robust Sunflowers
    Bruno Pasqualotto Cavalar
    Mrinal Kumar
    Benjamin Rossman
    Algorithmica, 2022, 84 : 3655 - 3685
  • [29] Communication complexity towards lower bounds on circuit depth
    Edmonds, J
    Impagliazzo, R
    Rudich, S
    Sgall, J
    COMPUTATIONAL COMPLEXITY, 2001, 10 (03) : 210 - 246
  • [30] Monotone Circuit Lower Bounds from Robust Sunflowers
    Cavalar, Bruno Pasqualotto
    Kumar, Mrinal
    Rossman, Benjamin
    ALGORITHMICA, 2022, 84 (12) : 3655 - 3685