New Lower Bounds on Circuit Size of Multi-output Functions

被引:4
|
作者
Demenkov, Evgeny [1 ]
Kulikov, Alexander S. [2 ]
Melanich, Olga [2 ]
Mihajlin, Ivan [2 ]
机构
[1] St Petersburg State Univ, St Petersburg 198504, Russia
[2] VA Steklov Math Inst, St Petersburg Dept, St Petersburg 191023, Russia
基金
俄罗斯基础研究基金会;
关键词
Circuit complexity; Lower bounds; Boolean functions; Gate elimination; BOOLEAN FUNCTIONS; COMBINATIONAL COMPLEXITY;
D O I
10.1007/s00224-014-9590-4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let B (n, m) be the set of all Boolean functions from {0, 1}(n) to {0, 1}(m) , B-n = B-n,B- 1 and U-2 = B-2 \ {circle plus, equivalent to}. In this paper, we prove the following two new lower bounds on the circuit size over U-2. 1. A lower bound C-U2 (f) >= 5n - o(n) for a linear function f is an element of B-n-1,B-log (n) . The lower bound follows from the following more general result: for any matrix A is an element of {0, 1}(mxn) with n pairwise different non-zero columns and b is an element of {0, 1}(m) , C(U2()Ax circle plus b) >= 5(n - m). 2. A lower bound C-U2 (f) >= 7n - o(n) for f is an element of B-n,B-n. Again, this is a consequence of the following result: for any f is an element of B-n satisfying a certain simple property, C-U2 (g(f)) >= min{C-U2 (f vertical bar(xi=a, xj=b)) : x(i) not equal x(j), a, b, is an element of{0, 1}} + 2n - Theta(1) where g(f) is an element of B-n,B- n is defined as follows: g(f) = (f circle plus x(1), ... , f circle plus x(n)) (to get a 7n - o(n) lower bound it remains to plug in a known function f is an element of B-n,B- 1 with C-U2 (f) >= 5n - o(n)).
引用
收藏
页码:630 / 642
页数:13
相关论文
共 50 条
  • [1] New Lower Bounds on Circuit Size of Multi-output Functions
    Evgeny Demenkov
    Alexander S. Kulikov
    Olga Melanich
    Ivan Mihajlin
    Theory of Computing Systems, 2015, 56 : 630 - 642
  • [2] Gate elimination: Circuit size lower bounds and #SAT upper bounds
    Golovnev, Alexander
    Kulikov, Alexander S.
    Smal, Alexander V.
    Tamaki, Suguru
    THEORETICAL COMPUTER SCIENCE, 2018, 719 : 46 - 63
  • [3] ASYMPTOTIC LOWER BOUND ON THE ALGEBRAIC IMMUNITY OF RANDOM BALANCED MULTI-OUTPUT BOOLEAN FUNCTIONS
    Carlet, Claude
    Merabet, Brahim
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2013, 7 (02) : 197 - 217
  • [4] On the construction of multi-output Boolean functions with optimal algebraic immunity
    Jie Zhang
    ShouChao Song
    Jiao Du
    QiaoYan Wen
    Science China Information Sciences, 2012, 55 : 1617 - 1623
  • [5] On the construction of multi-output Boolean functions with optimal algebraic immunity
    ZHANG Jie 1
    2 State Key Laboratory of Networking and Switching Technology
    3 Department of Mathematics
    Science China(Information Sciences), 2012, 55 (07) : 1617 - 1623
  • [6] LOWER BOUNDS ON FORMULA SIZE OF BOOLEAN FUNCTIONS USING HYPERGRAPH ENTROPY
    NEWMAN, I
    WIGDERSON, A
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1995, 8 (04) : 536 - 542
  • [7] On the construction of multi-output Boolean functions with optimal algebraic immunity
    Zhang Jie
    Song ShouChao
    Du Jiao
    Wen QiaoYan
    SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (07) : 1617 - 1623
  • [8] Constructing single- and multi-output boolean functions with maximal algebraic immunity
    Armknecht, Frederik
    Krause, Matthias
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 2, 2006, 4052 : 180 - 191
  • [9] On Uniformity and Circuit Lower Bounds
    Rahul Santhanam
    Ryan Williams
    computational complexity, 2014, 23 : 177 - 205
  • [10] On Uniformity and Circuit Lower Bounds
    Santhanam, Rahul
    Williams, Ryan
    COMPUTATIONAL COMPLEXITY, 2014, 23 (02) : 177 - 205