Development of high-strength corrosion-resistant austenitic TWIP steel

被引:0
作者
Mujica, L. [1 ]
Weber, S. [2 ]
Theisen, W.
机构
[1] Ruhr Univ Bochum, Max Planck Inst Disenforsch, Lehrstuhl Werkstofftech, Bochum, Germany
[2] Ruhr Univ Bochum, Helmholtz Zentrum Berlin Mat & Energie GmbH, Lehrstuhl Werkstofftech, Bochum, Germany
来源
METALLURGIA ITALIANA | 2011年 / 06期
关键词
TWIP steel; corrosion resistance; C plus N steels; high strength steel; thermodynamic equilibrium calculations; MN; ENERGY;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Based on thermodynamic calculations a (C+N) TWIP steel with the nominal composition Fe-25Mn-12Cr-0.3C-0.4N was developed and produced. Casting, diffusion annealing, hot rolling and water quenching were performed leading to a fully austenitic structure without delta-ferrite or epsilon-martensite. Unidirectional tensile tests were performed, revealing a yield strength of 460 MPa, ultimate tensile strength of 880 MPa (1700 MPa true strength) and an engineering strain of up to 100% at room temperature. The plasticity mechanisms were analysed based on the results of the tensile tests and cold work hardening behaviour; accompanied by microstructural analyses on deformed samples using X-Ray diffraction. Twinning was found to be an important deformation mechanism, while martensitic transformations do not take place in these materials. Correlation with predicted values of stacking fault energy (SFE) based on thermodynamic modelling is also taken into account Electrochemical corrosion tests show a good extent of passivation in 0.5 M H2SO4 electrolyte. The structure, mechanical properties and corrosion resistance are compared to conventional TWIP steels such as Fe-25Mn-3Al-3Si and Fe-22Mn-0.6C.
引用
收藏
页码:31 / 35
页数:5
相关论文
共 15 条
[1]   Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys [J].
Allain, S ;
Chateau, JP ;
Bouaziz, O ;
Migot, S ;
Guelton, N .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 387 :158-162
[2]   Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions [J].
Barbier, D. ;
Gey, N. ;
Allain, S. ;
Bozzolo, N. ;
Humbert, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 500 (1-2) :196-206
[3]   Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes [J].
Frommeyer, G ;
Brüx, U ;
Neumann, P .
ISIJ INTERNATIONAL, 2003, 43 (03) :438-446
[4]   Cold work hardening of high-strength austenitic steels [J].
Gavriljuk, V. G. ;
Tyshchenko, A. I. ;
Bliznuk, V. V. ;
Yakovleva, I. L. ;
Riedner, S. ;
Berns, H. .
STEEL RESEARCH INTERNATIONAL, 2008, 79 (06) :413-422
[5]   A physical concept for alloying steels with carbon plus nitrogen [J].
Gavriljuk, V. G. ;
Shanina, B. D. ;
Berns, H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 481 (1-2 C) :707-712
[6]  
Gavriljuk V.G., 1999, HIGH NITROGEN STEELS
[7]   Comparative studies on the corrosion properties, of a Fe-Mn-Al-Si steel and an interstitial-free steel [J].
Kannan, M. Bobby ;
Raman, R. K. Singh ;
Khoddam, S. .
CORROSION SCIENCE, 2008, 50 (10) :2879-2884
[8]   Damping capacity in Fe-Mn binary alloys [J].
Lee, YK ;
Jun, JH ;
Choi, CS .
ISIJ INTERNATIONAL, 1997, 37 (10) :1023-1030
[9]   MODIFIED STRESS-STRAIN RELATION FOR FCC METALS AND ALLOYS [J].
LUDWIGSON, DC .
METALLURGICAL TRANSACTIONS, 1971, 2 (10) :2825-+
[10]  
Mujica L., 2009, P 10 INT C HIGH NITR, P306