On almost blow-analytic equivalence

被引:2
作者
Fichou, Goulwen [1 ]
Shiota, Masahiro [2 ]
机构
[1] Univ Rennes 1, IRMAR, UMR 6625, F-35042 Rennes, France
[2] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
关键词
CHARACTERISTIC ZERO; THEOREM; SINGULARITIES; INVARIANTS; RING; SETS;
D O I
10.1112/plms/pdq031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the analytic equivalence of real analytic function germs after desingularization and state the cardinality of the classes under this equivalence relation. We consider also the Nash case, and compare these equivalences with the blow-analytic or blow-Nash equivalence. We prove an approximation result after desingularization: Nash function germs that are analytically equivalent after analytic desingularizations are Nash equivalent after Nash desingularizations.
引用
收藏
页码:676 / 709
页数:34
相关论文
共 22 条
[1]   Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant [J].
Bierstone, E ;
Milman, PD .
INVENTIONES MATHEMATICAE, 1997, 128 (02) :207-302
[2]  
Bochnak J., 2013, Ergeb. Math. Grenzgeb.
[3]   APPROXIMATION IN COMPACT NASH MANIFOLDS [J].
COSTE, M ;
RUIZ, JM ;
SHIOTA, M .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (04) :905-927
[4]   NULLSTELLENSATZ FOR NASH RINGS [J].
EFROYMSON, GA .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 54 (01) :101-112
[5]   Motivic invariants of arc-symmetric sets and blow-Nash equivalence [J].
Fichou, G .
COMPOSITIO MATHEMATICA, 2005, 141 (03) :655-688
[6]  
FICHOU G, 2008, ARXIV08114569
[7]  
Frisch J., 1967, Invent. Math, V4, P118, DOI DOI 10.1007/BF01425245
[8]   Seeking invariants for flow-analytic equivalence [J].
Fukui, T .
COMPOSITIO MATHEMATICA, 1997, 105 (01) :95-108
[9]  
FUKUI T, 2008, PANORAMAS SYNTHESES, V26, P87
[10]  
FUKUI T, 1998, PITMAN RES NOTES MAT, V381, P8