Hot deformation behaviour and fracture of 10CrMoWNb ferritic-martensitic steel

被引:41
作者
Churyumov, A. Yu. [1 ]
Khomutov, M. G. [1 ]
Solonin, A. N. [1 ]
Pozdniakov, A. V. [1 ]
Churyumova, T. A. [2 ]
Minyaylo, B. F. [2 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[2] JSC VNIINM, Moscow 123098, Russia
关键词
Ferritic-martensitic steel; Hot deformation; Constitutive model; Structure; Fracture; TEMPERATURE FLOW-STRESS; STAINLESS-STEEL; FERRITIC/MARTENSITIC STEELS; CONSTITUTIVE ANALYSIS; ALUMINUM-ALLOY; MICROSTRUCTURAL EVOLUTION; RESISTANT STEEL; COMPRESSION; PREDICT; WORKABILITY;
D O I
10.1016/j.matdes.2015.02.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-Cr ferritic-martensitic steels are important materials for use in nuclear reactors. This study describes a development activity for this category of steels involving the investigation of the hot deformation behaviour and microstructure evolution during hot deformation of 10CrMoWNb steel. Hot compression and tension tests were performed in the temperature range of 900-1350 degrees C by using a Gleeble 3800 thermomechanical simulator. The results indicate that the flow stress and ultimate tensile strength increase with a decrease of the deformation temperature and an increase of the strain rate. Based on the experimental true strain-true stress data, the modified Arrhenius-type constitutive model was established for a form of 10CrMoWNb ferritic-martensitic steel. The hot plasticity properties of the 10CrMoWNb steel increase with temperature up to 1275 degrees C due to dynamic recrystallisation processes in the austenite phase. The reduction of area decreases when the temperature is higher than 1300 degrees C and is zero at 1350 degrees C for all strain rates because of the liquid phase appearance in the structure of the steel. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 59 条
[21]   Comparative hot deformation characters of Al-Mn-Mg-RE alloy and Al-Mn-Mg-RE-Ti alloy [J].
Jiang, Fulin ;
Zhang, Hui ;
Ji, Xiankun ;
Meng, Xianna ;
Li, Luoxing .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 595 :10-17
[22]   Phase stability in proton and heavy ion irradiated ferritic-martensitic alloys [J].
Jiao, Zhijie ;
Shankar, Vani ;
Was, Gary S. .
JOURNAL OF NUCLEAR MATERIALS, 2011, 419 (1-3) :52-62
[23]   Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature [J].
Jin, Nengping ;
Zhang, Hui ;
Han, Yi ;
Wu, Wenxiang ;
Chen, Jianghua .
MATERIALS CHARACTERIZATION, 2009, 60 (06) :530-536
[24]   An inverse thermal-mechanical analysis of the hot torsion test for calibrating the constitutive parameters [J].
Khoddam, S. ;
Hodgson, P. D. ;
Bahramabadi, M. Jafari .
MATERIALS & DESIGN, 2011, 32 (04) :1903-1909
[25]   Creep rupture properties of nitrogen added 10Cr ferritic/martensitic steels [J].
Kim, SH ;
Song, BJ ;
Ryu, WS ;
Hong, JH .
JOURNAL OF NUCLEAR MATERIALS, 2004, 329 :299-303
[26]   Ferritic/martensitic steels for next-generation reactors [J].
Klueh, R. L. ;
Nelson, A. T. .
JOURNAL OF NUCLEAR MATERIALS, 2007, 371 (1-3) :37-52
[27]   Ferritic/martensitic steels - overview of recent results [J].
Klueh, RL ;
Gelles, DS ;
Jitsukawa, S ;
Kimura, A ;
Odette, GR ;
van der Schaaf, B ;
Victoria, M .
JOURNAL OF NUCLEAR MATERIALS, 2002, 307 (1 SUPPL.) :455-465
[28]   Embrittlement of reduced-activation ferritic/martensitic steels irradiated in HFIR at 300°C and 400°C [J].
Klueh, RL ;
Sokolov, MA ;
Shiba, K ;
Miwa, Y ;
Robertson, JP .
JOURNAL OF NUCLEAR MATERIALS, 2000, 283 (PART I) :478-482
[29]  
Lee CH, 1998, WELD J, V77, p29S
[30]   Characterization of flow behavior and microstructural evolution of Al-Zn-Mg-Sc-Zr alloy using processing maps [J].
Li, Bo ;
Pan, Qinglin ;
Zhang, Zhiye ;
Li, Chen .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 556 :844-848