Hot deformation behaviour and fracture of 10CrMoWNb ferritic-martensitic steel

被引:40
|
作者
Churyumov, A. Yu. [1 ]
Khomutov, M. G. [1 ]
Solonin, A. N. [1 ]
Pozdniakov, A. V. [1 ]
Churyumova, T. A. [2 ]
Minyaylo, B. F. [2 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[2] JSC VNIINM, Moscow 123098, Russia
关键词
Ferritic-martensitic steel; Hot deformation; Constitutive model; Structure; Fracture; TEMPERATURE FLOW-STRESS; STAINLESS-STEEL; FERRITIC/MARTENSITIC STEELS; CONSTITUTIVE ANALYSIS; ALUMINUM-ALLOY; MICROSTRUCTURAL EVOLUTION; RESISTANT STEEL; COMPRESSION; PREDICT; WORKABILITY;
D O I
10.1016/j.matdes.2015.02.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-Cr ferritic-martensitic steels are important materials for use in nuclear reactors. This study describes a development activity for this category of steels involving the investigation of the hot deformation behaviour and microstructure evolution during hot deformation of 10CrMoWNb steel. Hot compression and tension tests were performed in the temperature range of 900-1350 degrees C by using a Gleeble 3800 thermomechanical simulator. The results indicate that the flow stress and ultimate tensile strength increase with a decrease of the deformation temperature and an increase of the strain rate. Based on the experimental true strain-true stress data, the modified Arrhenius-type constitutive model was established for a form of 10CrMoWNb ferritic-martensitic steel. The hot plasticity properties of the 10CrMoWNb steel increase with temperature up to 1275 degrees C due to dynamic recrystallisation processes in the austenite phase. The reduction of area decreases when the temperature is higher than 1300 degrees C and is zero at 1350 degrees C for all strain rates because of the liquid phase appearance in the structure of the steel. (c) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 50 条
  • [1] Simulation of the Hot Deformation and Fracture Behavior of Reduced Activation Ferritic/Martensitic 13CrMoNbV Steel
    Shaikh, Asad
    Churyumov, Alexander
    Pozdniakov, Andrey
    Churyumova, Tatiana
    APPLIED SCIENCES-BASEL, 2020, 10 (02):
  • [2] Deformation and Fracture of 13CrMoNbV Ferritic-Martensitic Steel at Elevated Temperature
    A. Yu. Churyumov
    Physics of Metals and Metallography, 2019, 120 : 1228 - 1232
  • [3] Deformation and Fracture of 13CrMoNbV Ferritic-Martensitic Steel at Elevated Temperature
    Churyumov, A. Yu.
    PHYSICS OF METALS AND METALLOGRAPHY, 2019, 120 (12) : 1228 - 1232
  • [4] Fatigue behaviour of ODS ferritic-martensitic Eurofer steel
    Kubena, I.
    Kruml, T.
    Spaetig, P.
    Baluc, N.
    Oksiuta, Z.
    Petrenec, M.
    Obrtlik, K.
    Polak, J.
    FATIGUE 2010, 2010, 2 (01): : 717 - 724
  • [5] Cyclic deformation and microstructural behaviour of reduced activation ferritic-martensitic steels
    Batista, M. N.
    Alvarez-Armas, I.
    Giordana, M. F.
    Herenu, S.
    Armas, A. F.
    MATERIALS SCIENCE AND TECHNOLOGY, 2014, 30 (14) : 1826 - 1831
  • [6] Microstructural Deformation and Fracture of Reduced Activation Ferritic-Martensitic Steel EK-181 under Different Heat Treatment Conditions
    Polekhina, N. A.
    Litovchenko, I. Yu.
    Akkuzin, S. A.
    Spiridonova, K. V.
    Osipova, V. V.
    Chernov, V. M.
    Leontyeva-Smirnova, M. V.
    PHYSICAL MESOMECHANICS, 2024, 27 (05) : 529 - 540
  • [7] Hot Deformation Characteristics of 9Cr-1.5Mo-1.25Co-VNb Ferritic-Martensitic Steel
    Moon, Joonoh
    Lee, Tae-Ho
    Lee, Chang-Hoon
    Park, Seong-Jun
    Shin, Jong-Ho
    Lee, Jong-Wook
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2019, 50 (12): : 5670 - 5677
  • [8] Cavitation Wear of T91 Ferritic-Martensitic Steel
    Rostova, H. Yu.
    Tolstolutska, G. D.
    Vasilenko, R. L.
    Kolodiy, I. V.
    Kovalenko, V. I.
    Marinin, V. G.
    Tikhonovsky, M. A.
    Kuprin, O. S.
    MATERIALS SCIENCE, 2023, 58 (3) : 364 - 368
  • [9] Cavitation Wear of T91 Ferritic-Martensitic Steel
    H. Yu. Rostova
    G. D. Tolstolutska
    R. L. Vasilenko
    I. V. Kolodiy
    V. І. Kovalenko
    V. G. Marinin
    M. А. Tikhonovsky
    O. S. Kuprin
    Materials Science, 2022, 58 : 364 - 368
  • [10] Effects of Tungsten and Tantalum on Creep Deformation and Rupture Properties of Reduced Activation Ferritic-Martensitic Steel
    Vanaja, J.
    Laha, K.
    Mathew, M. D.
    Jayakumar, T.
    Kumar, E. Rajendra
    6TH INTERNATIONAL CONFERENCE ON CREEP, FATIGUE AND CREEP-FATIGUE INTERACTION, 2013, 55 : 271 - 276