On the relation between the fractional Brownian motion and the fractional derivatives

被引:46
作者
Ortigueira, Manuel Duarte [1 ]
Batista, Arnaldo Guimardes [1 ]
机构
[1] Univ Nova Lisboa, UNINOVA DEE, P-2825114 Monte De Caparica, Portugal
关键词
forward and backward fractional derivatives; generalised Cauchy derivative; Liouville derivative; differintegration; central fractional derivatives; fractional stochastic process; fractional Brownian motion;
D O I
10.1016/j.physleta.2007.08.062
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The definition and simulation of fractional Brownian motion are considered from the point of view of a set of coherent fractional derivative definitions. To do it. two sets of fractional derivatives are considered: (a) the forward and backward and (b) the central derivatives, together with two representations: generalised difference and integral. It is shown that for these derivatives the corresponding autocorrelation functions have the same representations. The obtained results are used to define a fractional noise and, from it, the fractional Brownian motion. This is studied. The simulation problem is also considered. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:958 / 968
页数:11
相关论文
共 21 条
[1]  
Andrews GE., 1999, SPECIAL FUNCTIONS, V71
[2]  
Coeurjolly JF, 2000, J STAT SOFTW, V5, P1, DOI DOI 10.18637/JSS.V005.I07
[3]   1/F NOISE [J].
KESHNER, MS .
PROCEEDINGS OF THE IEEE, 1982, 70 (03) :212-218
[4]  
Kolmogoroff AN, 1940, CR ACAD SCI URSS, V26, P115
[5]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[6]  
Mandelbrot BB, 1983, AM J PHYS, V51, P286, DOI [10.1119/1.13295, DOI 10.1119/1.13295]
[7]   Pseudo-fractional ARMA modelling using a double Levinson recursion [J].
Ortigueira, M. D. ;
Serralheiro, A. J. .
IET CONTROL THEORY AND APPLICATIONS, 2007, 1 (01) :173-178
[8]  
Ortigueira M. D., 2006, International Journal of Mathematics and Mathematical Sciences, V2006, P048391, DOI DOI 10.1155/IJMMS/2006/48391
[9]   A fractional linear system view of the fractional Brownian motion [J].
Ortigueira, MD ;
Batista, AG .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :295-303
[10]  
Ortigueira MD, 2000, IEE P-VIS IMAGE SIGN, V147, P71, DOI 10.1049/ip-vis:20000273