Generalized Ricci flow on nilpotent Lie groups

被引:1
|
作者
Paradiso, Fabio [1 ]
机构
[1] Univ Torino, Dipartimento Matemat G Peano, Via Carlo Alberto 10, I-10123 Turin, Italy
关键词
Generalized geometry; generalized Ricci flow; nilpotent Lie groups; T-DUALITY;
D O I
10.1515/forum-2020-0171
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define solitons for the generalized Ricci flow on an exact Courant algebroid. We then define a family of flows for left-invariant Dorfman brackets on an exact Courant algebroid over a simply connected nilpotent Lie group, generalizing the bracket flows for nilpotent Lie brackets in a way that might make this new family of flows useful for the study of generalized geometric flows such as the generalized Ricci flow. We provide explicit examples of both constructions on the Heisenberg group. We also discuss solutions to the generalized Ricci flow on the Heisenberg group.
引用
收藏
页码:997 / 1014
页数:18
相关论文
共 50 条
  • [1] On Lorentzian Ricci solitons on nilpotent Lie groups
    Wears, Thomas H.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (8-9) : 1381 - 1405
  • [2] THE GEODESIC FLOW ON NILPOTENT LIE GROUPS OF STEPS TWO AND THREE
    Ovando, Gabriela P.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (01) : 327 - 352
  • [3] Four-dimensional generalized Ricci flows with nilpotent symmetry
    Gindi, Steven
    Streets, Jeffrey
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (07)
  • [4] Generalized Gelfand Pairs Associated to m-Step Nilpotent Lie Groups
    Silvina Campos
    José García
    Linda Saal
    The Journal of Geometric Analysis, 2023, 33
  • [5] Generalized Gelfand Pairs Associated to m-Step Nilpotent Lie Groups
    Campos, Silvina
    Garcia, Jose
    Saal, Linda
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (02)
  • [6] Nilpotent Lie groups and hyperbolic automorphisms
    Choudhuri, Manoj
    Raja, C. R. E.
    ARCHIV DER MATHEMATIK, 2020, 115 (03) : 247 - 255
  • [7] Nilpotent Lie groups and hyperbolic automorphisms
    Manoj Choudhuri
    C. R. E. Raja
    Archiv der Mathematik, 2020, 115 : 247 - 255
  • [8] On Einstein Lorentzian nilpotent Lie groups
    Boucetta, Mohamed
    Tibssirte, Oumaima
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (12)
  • [9] Construction of nice nilpotent Lie groups
    Conti, Diego
    Rossi, Federico A.
    JOURNAL OF ALGEBRA, 2019, 525 : 311 - 340
  • [10] Optimal Transport and Generalized Ricci Flow
    Kopfer, Eva
    Streets, Jeffrey
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2024, 20