Diamond formation in cubic silicon carbide

被引:7
作者
Pécz, B
Weishart, H
Heera, V
Tóth, L
机构
[1] Hungarian Acad Sci, Res Inst Tech Phys & Mat Sci, H-1525 Budapest, Hungary
[2] Rossendorf Inc, Forschungszentrum Rossendorf EV, D-01314 Dresden, Germany
关键词
D O I
10.1063/1.1534611
中图分类号
O59 [应用物理学];
学科分类号
摘要
High-dose carbon implantation (3x10(17) and 1x10(18) ions/cm(2)) into cubic SiC on Si was carried out at elevated temperatures (600 to 1200 degreesC) and different dose rates (1x10(13) to 1.5x10(14) cm(-2) s(-1)). Transmission electron microscopy revealed the formation of either graphite or diamond precipitates, depending on the implantation parameters. In all cases, the diamond grains were epitaxial to the SiC lattice, while the graphite was textured. The minimum temperature for diamond formation was 900 degreesC, while graphite formed at 600 degreesC. The synthesized phase depends as well on the dose rate; graphite was formed at 900 degreesC with a high dose rate. Obviously, a critical temperature for diamond formation exists and increases with increasing dose rate. This behavior is explained by the competition between the accumulation and dynamic annealing of radiation defects in the SiC lattice, which acts as a template for diamond nucleation. Diamond grains with diameters as large as 10 nm have been observed after implantation at 1200 degreesC. (C) 2003 American Institute of Physics.
引用
收藏
页码:46 / 48
页数:3
相关论文
共 50 条
[21]   Doping in cubic silicon-carbide [J].
Gubanov, VA ;
Fong, CY .
APPLIED PHYSICS LETTERS, 1999, 75 (01) :88-90
[22]   Cs diffusion in cubic silicon carbide [J].
Shrader, David ;
Szlufarska, Izabela ;
Morgan, Dane .
JOURNAL OF NUCLEAR MATERIALS, 2012, 421 (1-3) :89-96
[23]   Polytype Inclusions in Cubic Silicon Carbide [J].
Vasiliauskas, Remigijus ;
Malinovskis, Paulius ;
Mekys, Algirdas ;
Syvajarvi, Mikael ;
Storasta, Jurgis ;
Yakimova, Rositza .
SILICON CARBIDE AND RELATED MATERIALS 2012, 2013, 740-742 :335-+
[24]   DONORS IN CUBIC SILICON-CARBIDE [J].
MOORE, WJ ;
FREITAS, JA ;
LINCHUNG, PJ .
SOLID STATE COMMUNICATIONS, 1995, 93 (05) :389-392
[25]   Intrinsic defects in cubic silicon carbide [J].
Itoh, H ;
Kawasuso, A ;
Ohshima, T ;
Yoshikawa, M ;
Nashiyama, I ;
Tanigawa, S ;
Misawa, S ;
Okumura, H ;
Yoshida, S .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1997, 162 (01) :173-198
[26]   Effect of plasma formation on the double pulse laser excitation of cubic silicon carbide [J].
Otobe, T. ;
Hayashi, T. ;
Nishikino, M. .
APPLIED PHYSICS LETTERS, 2017, 111 (17)
[27]   Strength of diamond - silicon carbide interfaces in silicon carbide bonded diamond materials containing graphitic interlayers [J].
Yousefi, P. ;
Matthey, B. ;
Fontanot, T. ;
Herre, P. ;
Hoehn, S. ;
Kunze, S. ;
Christiansen, S. H. ;
Herrmann, M. .
OPEN CERAMICS, 2022, 11
[28]   Multilayer diamond coatings on silicon carbide [J].
Dept of Materials Science, North Carolina State University, Raleigh NC 27695-7916, United States .
Surf Coat Technol, 2-3 (172-182)
[29]   Multilayer diamond coatings on silicon carbide [J].
Fan, WD ;
Jagannadham, K ;
Goral, BC .
SURFACE & COATINGS TECHNOLOGY, 1996, 81 (2-3) :172-182
[30]   Formation of cubic silicon carbide layers on silicon under the action of continuous and pulsed carbon ion beams [J].
Bayazitov, RM ;
Khaibullin, IB ;
Batalov, RI ;
Nurutdinov, RM .
TECHNICAL PHYSICS, 2003, 48 (06) :742-744