A delay equation model for the Atlantic Multidecadal Oscillation

被引:2
作者
Falkena, Swinda K. J. [1 ,2 ]
Quinn, Courtney [4 ,5 ]
Sieber, Jan [5 ]
Dijkstra, Henk A. [2 ,3 ]
机构
[1] Univ Reading, Dept Math & Stat, Reading, Berks, England
[2] Univ Utrecht, Dept Phys, Inst Marine & Atmospher Res Utrecht, Utrecht, Netherlands
[3] Univ Utrecht, Ctr Complex Syst Studies, Fac Sci, Utrecht, Netherlands
[4] CSIRO Oceans & Atmosphere, Hobart, Tas, Australia
[5] Univ Exeter, Dept Math, Exeter, Devon, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2021年 / 477卷 / 2246期
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Atlantic Multidecadal Oscillation; Mori-Zwanzig; delay model; reduction methods; conceptual models; SEA-SURFACE TEMPERATURE; DIFFERENTIAL EQUATIONS; CLIMATE VARIABILITY; CMIP5; MODELS; SPECTRUM;
D O I
10.1098/rspa.2020.0659
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A new technique to derive delay models from systems of partial differential equations, based on the Mori-Zwanzig (MZ) formalism, is used to derive a delay-difference equation model for the Atlantic Multidecadal Oscillation (AMO). The MZ formalism gives a rewriting of the original system of equations, which contains a memory term. This memory term can be related to a delay term in a resulting delay equation. Here, the technique is applied to an idealized, but spatially extended, model of the AMO. The resulting delay-difference model is of a different type than the delay differential model which has been used to describe the El Nino Southern Oscillation. In addition to this model, which can also be obtained by integration along characteristics, error terms for a smoothing approximation of the model have been derived from the MZ formalism. Our new method of deriving delay models from spatially extended models has a large potential to use delay models to study a range of climate variability phenomena.
引用
收藏
页数:21
相关论文
共 43 条
  • [1] BATTISTI DS, 1989, J ATMOS SCI, V46, P1687, DOI 10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO
  • [2] 2
  • [3] THE DYNAMICS OF A LOW-ORDER MODEL FOR THE ATLANTIC MULTIDECADAL OSCILLATION
    Broer, Henk
    Dijkstra, Henk
    Simo, Carles
    Sterk, Alef
    Vitolo, Renato
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2011, 16 (01): : 73 - 107
  • [4] Cheung AH, 2017, J CLIMATE, V30, P4763, DOI [10.1175/jcli-d-16-0712.1, 10.1175/JCLI-D-16-0712.1]
  • [5] Optimal prediction for Hamiltonian partial differential equations
    Chorin, AJ
    Kupferman, R
    Levy, D
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 162 (01) : 267 - 297
  • [6] Optimal prediction with memory
    Chorin, AJ
    Hald, OH
    Kupferman, R
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2002, 166 (3-4) : 239 - 257
  • [7] Ice-core data evidence for a prominent near 20 year time-scale of the Atlantic Multidecadal Oscillation
    Chylek, Petr
    Folland, Chris K.
    Dijkstra, Henk A.
    Lesins, Glen
    Dubey, Manvendra K.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2011, 38
  • [8] Cushman-Roisin B., 2011, INTRO GEOPHYS FLUID, V101
  • [9] Computing generalized Langevin equations and generalized Fokker-Planck equations
    Darve, Eric
    Solomon, Jose
    Kia, Amirali
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (27) : 10884 - 10889
  • [10] De Verdière AC, 1999, J PHYS OCEANOGR, V29, P893, DOI 10.1175/1520-0485(1999)029<0893:BIAOWF>2.0.CO