Deformable Image Registration with Inclusion of Autodetected Homologous Tissue Features

被引:6
作者
Zhu, Qingsong [1 ]
Gu, Jia [1 ]
Xie, Yaoqin [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Key Lab Hlth Informat, Shenzhen 518055, Peoples R China
[2] Stanford Univ, Sch Med, Dept Radiat Oncol, Stanford, CA 94305 USA
来源
SCIENTIFIC WORLD JOURNAL | 2012年
基金
中国国家自然科学基金;
关键词
TECHNICAL NOTE; CT; VALIDATION; PROSTATE;
D O I
10.1100/2012/913693
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A novel deformable registration algorithm is proposed in the application of radiation therapy. The algorithm starts with autodetection of a number of points with distinct tissue features. The feature points are then matched by using the scale invariance features transform (SIFT) method. The associated feature point pairs are served as landmarks for the subsequent thin plate spline (TPS) interpolation. Several registration experiments using both digital phantom and clinical data demonstrate the accuracy and efficiency of the method. For the 3D phantom case, markers with error less than 2mm are over 85% of total test markers, and it takes only 2-3 minutes for 3D feature points association. The proposed method provides a clinically practical solution and should be valuable for various image-guided radiation therapy (IGRT) applications.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 50 条
  • [21] Deformable Image Registration of Liver With Consideration of Lung Sliding Motion
    Xie, Yaoqin
    Chao, Ming
    Xiong, Guanglei
    MEDICAL PHYSICS, 2011, 38 (10) : 5351 - 5361
  • [22] Analysis of deformable image registration accuracy using computational modeling
    Zhong, Hualiang
    Kim, Jinkoo
    Chetty, Indrin J.
    MEDICAL PHYSICS, 2010, 37 (03) : 970 - 979
  • [23] Performance Evaluation of Deformable Image Registration Systems - SmartAdapt® and Velocity™
    Kumar, M. Anil
    Hajare, Raghavendra
    Nath, Bhakti Dev
    Lakshmi, K. K. Sree
    Mahantshetty, Umesh M.
    JOURNAL OF MEDICAL PHYSICS, 2024, 49 (02) : 240 - 249
  • [24] The level of detail required in a deformable phantom to accurately perform quality assurance of deformable image registration
    Saenz, Daniel L.
    Kim, Hojin
    Chen, Josephine
    Stathakis, Sotirios
    Kirby, Neil
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (17) : 6269 - 6280
  • [25] Joint synthesis and registration network for deformable MR-CBCT image registration for neurosurgical guidance
    Han, R.
    Jones, C. K.
    Lee, J.
    Zhang, X.
    Wu, P.
    Vagdargi, P.
    Uneri, A.
    Helm, P. A.
    Luciano, M.
    Anderson, W. S.
    Siewerdsen, J. H.
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (12)
  • [26] Dosimetric impact of deformable image registration using radiophotoluminescent glass dosimeters with a physical geometric phantom
    Sakulsingharoj, Siwaporn
    Kadoya, Noriyuki
    Tanaka, Shohei
    Sato, Kiyokazu
    Nakamura, Mitsuhiro
    Jingu, Keiichi
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (04):
  • [27] Usefulness of hybrid deformable image registration algorithms in prostate radiation therapy
    Motegi, Kana
    Tachibana, Hidenobu
    Motegi, Atsushi
    Hotta, Kenji
    Baba, Hiromi
    Akimoto, Tetsuo
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2019, 20 (01): : 229 - 236
  • [28] FEM-based evaluation of deformable image registration for radiation therapy
    Zhong, Hualiang
    Peters, Terry
    Siebers, Jeffrey V.
    PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (16) : 4721 - 4738
  • [29] Implementation and evaluation of various demons deformable image registration algorithms on a GPU
    Gu, Xuejun
    Pan, Hubert
    Liang, Yun
    Castillo, Richard
    Yang, Deshan
    Choi, Dongju
    Castillo, Edward
    Majumdar, Amitava
    Guerrero, Thomas
    Jiang, Steve B.
    PHYSICS IN MEDICINE AND BIOLOGY, 2010, 55 (01) : 207 - 219
  • [30] Deformable CT image registration via a dual feasible neural network
    Lei, Yang
    Fu, Yabo
    Tian, Zhen
    Wang, Tonghe
    Dai, Xianjin
    Roper, Justin
    Yu, David S.
    McDonald, Mark
    Bradley, Jeffrey D.
    Liu, Tian
    Zhou, Jun
    Yang, Xiaofeng
    MEDICAL PHYSICS, 2022, 49 (12) : 7545 - 7554