Extension of Razumikhin's Theorem for Time-Varying Systems with Delay

被引:0
作者
Mazenc, Frederic [1 ]
Malisoff, Michael [2 ]
机构
[1] Univ Paris Sud, Cent Supelec, Lab Signaux & Syst, EPI DISCO Inria Saclay,UMR CNRS 8506, F-91192 Gif Sur Yvette, France
[2] Louisiana State Univ, Dept Math, 303 Lockett Hall, Baton Rouge, LA 70803 USA
来源
2016 AMERICAN CONTROL CONFERENCE (ACC) | 2016年
基金
美国国家科学基金会;
关键词
delay; Lyapunov; Razumikhin; stability; REDUCTION MODEL APPROACH; NONLINEAR-SYSTEMS; STABILITY; COMPENSATION; ROBUSTNESS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove a new extension of Razumikhin's theorem that applies to time-varying nonlinear systems with time-varying delays, using a novel 'strictification' method for converting a nonstrict Lyapunov function into a strict Lyapunov function. We apply our method to a model from identification theory, to illustrate how our new result can allow broader classes of delays than earlier methods.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 28 条
[1]  
Bekiaris-Liberis N., 2013, ADV DESIGN CONTROL, V25
[2]   Robustness of nonlinear predictor feedback laws to time- and state-dependent delay perturbations [J].
Bekiaris-Liberis, Nikolaos ;
Krstic, Miroslav .
AUTOMATICA, 2013, 49 (06) :1576-1590
[3]  
Bresch-Pietri D, 2014, IEEE DECIS CONTR P, P457, DOI 10.1109/CDC.2014.7039423
[4]  
Dieulot JY, 2001, IEEE DECIS CONTR P, P4027, DOI 10.1109/CDC.2001.980523
[5]  
Downey R, 2016, ADV DELAY DYN, V4, P143, DOI 10.1007/978-3-319-18072-4_7
[6]   On complete Lyapunov-Krasovskii functional techniques for uncertain systems with fast-varying delays [J].
Fridman, Emilia ;
Niculescu, Silviu-Iulian .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (03) :364-374
[7]  
GU K., 2003, CONTROL ENGN SER BIR
[8]   Survey on recent results in the stability and control of time-delay systems [J].
Gu, KQ ;
Niculescu, SI .
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2003, 125 (02) :158-165
[9]   Further remarks on additional dynamics in various model transformations of linear delay systems [J].
Gu, KQ ;
Niculescu, SI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (03) :497-500
[10]  
Halanay A., 1966, Differential equations: Stability, Oscillations and Time Lags, V6