THE DOUBLE ROMAN DOMATIC NUMBER OF A DIGRAPH

被引:2
作者
Volkmann, Lutz [1 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
digraph; double Roman domination; double Roman domatic number; DOMINATION;
D O I
10.7151/dmgt.2161
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A double Roman dominating function on a digraph D with vertex set V(D) is defined in [G. Hao, X. Chen and L. Volkmann, Double Roman domination in digraphs, Bull. Malays. Math. Sci. Soc. (2017).] as a function f : V(D) -> {0, 1, 2, 3} having the property that if f(v) = 0, then the vertex v must have at least two in-neighbors assigned 2 under f or one in-neighbor w with f(w) = 3, and if f(v) = 1, then the vertex v must have at least one in-neighbor u with f (u) >= 2. A set {f(1), f(2), ..., f(d)} of distinct double Roman dominating functions on D with the property that Sigma(d)(i=1) f(i)(v) <= 3 for each v is an element of V(D) is called a double Roman dominating family (of functions) on D. The maximum number of functions in a double Roman dominating family on D is the double Roman domatic number of D, denoted by d(dR)(D). We initiate the study of the double Roman domatic number, and we present different sharp bounds on d(dR)(D). In addition, we determine the double Roman domatic number of some classes of digraphs.
引用
收藏
页码:995 / 1004
页数:10
相关论文
共 50 条
[31]   An Upper Bound on the Double Roman Domination Number [J].
Ouldrabah, Lyes ;
Volkmann, Lutz .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (05) :1315-1323
[32]   An upper bound on the double Roman domination number [J].
Amjadi, J. ;
Nazari-Moghaddam, S. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) :81-89
[33]   An Upper Bound on the Double Roman Domination Number [J].
Lyes Ouldrabah ;
Lutz Volkmann .
Bulletin of the Iranian Mathematical Society, 2021, 47 :1315-1323
[34]   An upper bound on the double Roman domination number [J].
J. Amjadi ;
S. Nazari-Moghaddam ;
S. M. Sheikholeslami ;
L. Volkmann .
Journal of Combinatorial Optimization, 2018, 36 :81-89
[35]   Restrained Roman and restrained Italian domatic numbers of graphs [J].
Volkmann, Lutz .
DISCRETE APPLIED MATHEMATICS, 2022, 322 :153-159
[36]   The number of reachable pairs in a digraph [J].
Rao, A. R. .
DISCRETE MATHEMATICS, 2006, 306 (14) :1595-1600
[37]   On the Italian reinforcement number of a digraph [J].
Xie, Zhihong ;
Hao, Guoliang ;
Sheikholeslami, S. M. ;
Zeng, Shuting .
AIMS MATHEMATICS, 2021, 6 (06) :6490-6505
[38]   THE RAINBOW DOMINATION NUMBER OF A DIGRAPH [J].
Amjadi, J. ;
Bahremandpour, A. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2013, 37 (02) :257-268
[39]   The signed domatic number of some regular graphs [J].
Meierling, Dirk ;
Volkmann, Lutz ;
Zitzen, Stephan .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (08) :1905-1912
[40]   The signed (k, k)-domatic number of digraphs [J].
Sheikholeslami, Seyed Mahmoud ;
Volkmann, Lutz .
MATHEMATICAL COMMUNICATIONS, 2012, 17 (02) :537-546