Motion of a rigid body in a viscous fluid

被引:25
作者
Conca, C [1 ]
San Martín, J
Tucsnak, M
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Fac Sci, Inst Elie Cartan, F-54506 Vandoeuvre Nancy, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 328卷 / 06期
关键词
D O I
10.1016/S0764-4442(99)80193-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a concept of weak solution for a boundary value problem modelling the motion of a rigid body immersed in a viscous fluid. The time variation of the fluid's domain (due to the motion of the rigid body) is not known a priori, so we deal with a free boundary value problem. Our main theorem asserts the existence of at least one weak solution for this problem. The result is global in time provided that the rigid body does not touch the boundary. (C) Academie des Sciences/Elsevier, Paris.
引用
收藏
页码:473 / 478
页数:6
相关论文
共 9 条
[1]  
[Anonymous], 1977, NAVIERSTOKES EQUATIO
[2]  
CONCA C, EXISTENCE SOLUTIONS
[3]  
DESJARDINS, EXISTENCE WEAK SOLUT
[4]   ORDINARY DIFFERENTIAL-EQUATIONS, TRANSPORT-THEORY AND SOBOLEV SPACES [J].
DIPERNA, RJ ;
LIONS, PL .
INVENTIONES MATHEMATICAE, 1989, 98 (03) :511-547
[5]  
Fujita H., 1970, Journal of the Faculty of Science, University of Tokyo, Section 1A (Mathematics), V17, P403
[6]   Existence for a two-dimensional, unsteady fluid-structure interaction problem [J].
Grandmont, C ;
Maday, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (04) :525-530
[7]  
HOFFMANN H, MOTION SOLID BODY VI
[8]  
Lions J. L., 1969, QUELQUES METHODES RE
[9]  
Serre D., 1987, JAPAN J APPL MATH, V4, P99, DOI DOI 10.1007/BF03167757