The rate of convergence for the method of alternating projections .2.

被引:48
作者
Deutsch, F [1 ]
Hundal, H [1 ]
机构
[1] HRB SYST, STATE COLL, PA USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jmaa.1997.5202
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the paper is threefold: (1) To develop a useful error bound for the method of alternating projections which is relatively easy to compute and remember; (2) To exhibit a counterexample to a conjecture of Kayalar and Weinert; (3) To show that (in the case of at least three subspaces) any error bound which only depends on the angles between the various subspaces involved can never be sharp. (C) 1997 Academic Press.
引用
收藏
页码:381 / 405
页数:25
相关论文
共 15 条
[1]  
ARONSZAJN N, 1950, T AM MATH SOC, V68, P337, DOI DOI 10.2307/1990404
[2]  
AUBIN J, 1979, APPLIED FUNCTIONAL A
[3]  
Bauschke HH., 1993, Set-Valued Analysis, V1, P185, DOI [DOI 10.1007/BF01027691, DOI 10.1007/BF01027691.49,50, 10.1007/BF01027691]
[4]  
DEUTSCH F, 1992, NATO ADV SCI I C-MAT, V356, P105
[5]  
DEUTSCH F, 1995, NATO ADV SCI INST SE, V454, P107
[6]  
Deutsch F, 1984, PARAMETRIC OPTIMIZAT, P96
[7]  
DIXMIER J, 1949, B SOC MATH FRANCE, V77, P11
[8]   ON THE VONNEUMANN ALTERNATING ALGORITHM IN HILBERT-SPACE [J].
FRANCHETTI, C ;
LIGHT, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 114 (02) :305-314
[10]  
Halperin I., 1962, ACTA SCI MATH SZEGED, V23, P96