Opportunities and challenges of organic flow battery for electrochemical energy storage technology

被引:52
作者
Zhao, Ziming [1 ,2 ,3 ]
Zhang, Changkun [1 ]
Li, Xianfeng [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Div Energy Storage, Dalian Natl Lab Clean Energy, Dalian 116023, Liaoning, Peoples R China
[2] Chinese Acad Sci, Changchun Inst Appl Chem, Changchun 130022, Jilin, Peoples R China
[3] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 67卷
关键词
Electrochemical energy storage; Flow battery; Organic systems; Organic redox-active molecules; HIGH-CURRENT DENSITY; ANOLYTE MATERIALS; GRAPHITE FELT; HIGH-CAPACITY; NEGATIVE CHARGE; LONG-LIFETIME; REDOX COUPLE; LOW-COST; PERFORMANCE; ELECTROLYTES;
D O I
10.1016/j.jechem.2021.10.037
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
For flow batteries (FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs (OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components (redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted.CO 2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:621 / 639
页数:19
相关论文
共 170 条
[1]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[2]  
Anslyn E. V., 2006, MODERN PHYS ORGANIC
[3]   Organic Redox Systems Based on Pyridinium-Carbene Hybrids [J].
Antoni, Patrick W. ;
Bruckhoff, Tim ;
Hansmann, Max M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (24) :9701-9711
[4]   Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review [J].
Armstrong, Craig G. ;
Toghill, Kathryn E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2018, 91 :19-24
[5]   Cobalt(II) complexes with azole-pyridine type ligands for non-aqueous redox-flow batteries: Tunable electrochemistry via structural modification [J].
Armstrong, Craig G. ;
Toghill, Kathryn E. .
JOURNAL OF POWER SOURCES, 2017, 349 :121-129
[6]   Tailoring Two-Electron-Donating Phenothiazines To Enable High Concentration Redox Electrolytes for Use in Nonaqueous Redox Flow Batteries [J].
Attanayake, N. Harsha ;
Kowalski, Jeffrey A. ;
Greco, Katharine V. ;
Casselman, Matthew D. ;
Milshtein, Jarrod D. ;
Chapman, Steven J. ;
Parkin, Sean R. ;
Brushett, Fikile R. ;
Odom, Susan A. .
CHEMISTRY OF MATERIALS, 2019, 31 (12) :4353-4363
[7]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[8]   Evaluation of Tris-Bipyridine Chromium Complexes for Flow Battery Applications: Impact of Bipyridine Ligand Structure on Solubility and Electrochemistry [J].
Cabrera, Pablo J. ;
Yang, Xingyi ;
Suttil, James A. ;
Brooner, Rachel E. M. ;
Thompson, Levi T. ;
Sanford, Melanie S. .
INORGANIC CHEMISTRY, 2015, 54 (21) :10214-10223
[9]   Molecular redox species for next-generation batteries [J].
Cameron, Jamie M. ;
Holc, Conrad ;
Kibler, Alexander J. ;
Peake, Catherine L. ;
Walsh, Darren A. ;
Newton, Graham N. ;
Johnson, Lee R. .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (10) :5863-5883
[10]   A higher voltage Fe(II) bipyridine complex for non-aqueous redox flow batteries [J].
Cammack, Claudina X. ;
Pratt, Harry D., III ;
Small, Leo J. ;
Anderson, Travis M. .
DALTON TRANSACTIONS, 2021, 50 (03) :858-868