On the Wind Generation of Water Waves

被引:8
|
作者
Buhler, Oliver [1 ]
Shatah, Jalal [1 ]
Walsh, Samuel [2 ]
Zeng, Chongchun [3 ]
机构
[1] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[2] Univ Missouri, Dept Math, Math Sci Bldg, Columbia, MO 65211 USA
[3] Georgia Inst Technol, Sch Math, 686 Cherry St, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
SURFACE-WAVES; SHEAR FLOWS; INVARIANT-MANIFOLDS; EULER EQUATIONS; INSTABILITY; MOTION; FLUID; INTERFACE; SPACES;
D O I
10.1007/s00205-016-1012-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the mathematical theory of wind generated water waves. This entails determining the stability properties of the family of laminar flow solutions to the two-phase interface Euler equation. We present a rigorous derivation of the linearized evolution equations about an arbitrary steady solution, and, using this, we give a complete proof of the instability criterion of Miles [16]. Our analysis is valid even in the presence of surface tension and a vortex sheet (discontinuity in the tangential velocity across the air-sea interface). We are thus able to give a unified equation connecting the Kelvin-Helmholtz and quasi-laminar models of wave generation.
引用
收藏
页码:827 / 878
页数:52
相关论文
共 50 条