Discretization of hyperbolic type Darboux integrable equations preserving integrability

被引:15
作者
Habibullin, Ismagil [1 ]
Zheltukhina, Natalya [2 ]
Sakieva, Alfia [1 ]
机构
[1] Russian Acad Sci, Ufa Inst Math, Ufa 450077, Russia
[2] Bilkent Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey
基金
俄罗斯基础研究基金会;
关键词
Liouville equation; nonlinear equations; partial differential equations; DISCRETE;
D O I
10.1063/1.3628587
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method of integrable discretization of the Liouville type nonlinear partial differential equations based on integrals is suggested. New examples of the discrete Liouville type models are presented. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3628587]
引用
收藏
页数:12
相关论文
共 18 条
[1]   Discrete analogues of the Liouville equation [J].
Adler, VE ;
Startsev, SY .
THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 121 (02) :1484-1495
[2]  
[Anonymous], P INT C ALG AN METH
[3]   BACKLUND TRANSFORMATIONS FOR SINE-GORDON EQUATIONS [J].
DODD, RK ;
BULLOUGH, RK .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1976, 351 (1667) :499-523
[4]  
Drinfeld VG., 1985, J. Sov. Math., V30, P1975, DOI [10.1007/BF02105860, DOI 10.1007/BF02105860]
[5]  
GOURSAT E, 1899, ANN FACULTE SCI 1 U, V2, P31
[6]   On Darboux-integrable semi-discrete chains [J].
Habibullin, Ismagil ;
Zheltukhina, Natalya ;
Sakieva, Alfia .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (43)
[7]   Complete list of Darboux integrable chains of the form t1x=tx+d(t,t1) [J].
Habibullin, Ismagil ;
Zheltukhina, Natalya ;
Pekcan, Asli .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (10)
[8]   C-series discrete chains [J].
Habibullin, IT .
THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 146 (02) :170-182
[9]   NON-LINEAR PARTIAL DIFFERENCE EQUATIONS .5. NON-LINEAR EQUATIONS REDUCIBLE TO LINEAR EQUATIONS [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1979, 46 (01) :312-319
[10]   ASYMPTOTIC TRANSITIONS FROM DISCRETE TO CONTINUOUS MODELS [J].
KALYAKIN, LA .
THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 76 (03) :891-894