A high-throughput yeast display approach to profile pathogen proteomes for MHC-II binding

被引:14
作者
Huisman, Brooke D. [1 ,2 ]
Dai, Zheng [3 ,4 ]
Gifford, David K. [2 ,3 ,4 ]
Birnbaum, Michael E. [1 ,2 ,5 ]
Rath, Satyajit
机构
[1] Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, Cambridge, MA 02142 USA
[3] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA USA
[5] MIT & Harvard, Ragon Inst MGH, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
peptide-MHC; yeast surface display; antigen prediction; Human; S; cerevisiae; PEPTIDE BINDING; IDENTIFICATION; SPECIFICITY; PREDICTION; COMPLEXES; SELECTION; MOLECULE; IMMUNITY; VACCINE; MOTIFS;
D O I
10.7554/eLife.78589
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
T cells play a critical role in the adaptive immune response, recognizing peptide antigens presented on the cell surface by major histocompatibility complex (MHC) proteins. While assessing peptides for MHC binding is an important component of probing these interactions, traditional assays for testing peptides of interest for MHC binding are limited in throughput. Here, we present a yeast display-based platform for assessing the binding of tens of thousands of user-defined peptides in a high-throughput manner. We apply this approach to assess a tiled library covering the SARS-CoV-2 proteome and four dengue virus serotypes for binding to human class II MHCs, including HLA-DR401, -DR402, and -DR404. While the peptide datasets show broad agreement with previously described MHC-binding motifs, they additionally reveal experimentally validated computational false positives and false negatives. We therefore present this approach as able to complement current experimental datasets and computational predictions. Further, our yeast display approach underlines design considerations for epitope identification experiments and serves as a framework for examining relationships between viral conservation and MHC binding, which can be used to identify potentially high-interest peptide binders from viral proteins. These results demonstrate the utility of our approach to determine peptide-MHC binding interactions in a manner that can supplement and potentially enhance current algorithm-based approaches.
引用
收藏
页数:24
相关论文
共 62 条
[1]   Defining HLA-II Ligand Processing and Binding Rules with Mass Spectrometry Enhances Cancer Epitope Prediction [J].
Abelin, Jennifer G. ;
Harjanto, Dewi ;
Malloy, Matthew ;
Suri, Prerna ;
Colson, Tyler ;
Goulding, Scott P. ;
Creech, Amanda L. ;
Serrano, Lia R. ;
Nasir, Gibran ;
Nasrullah, Yusuf ;
McGann, Christopher D. ;
Velez, Diana ;
Ting, Ying S. ;
Poran, Asaf ;
Rothenberg, Daniel A. ;
Chhangawala, Sagar ;
Rubinsteyn, Alex ;
Hammerbacher, Jeff ;
Gaynor, Richard B. ;
Fritsch, Edward F. ;
Greshock, Joel ;
Oslund, Rob C. ;
Barthelme, Dominik ;
Addona, Terri A. ;
Arleta, Christina M. ;
Rooney, Michael S. .
IMMUNITY, 2019, 51 (04) :766-+
[2]   Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction [J].
Abelin, Jennifer G. ;
Keskin, Derin B. ;
Sarkizova, Siranush ;
Hartigan, Christina R. ;
Zhang, Wandi ;
Sidney, John ;
Stevens, Jonathan ;
Lane, William ;
Zhang, Guang Lan ;
Eisenhaure, Thomas M. ;
Clauser, Karl R. ;
Hacohen, Nir ;
Rooney, Michael S. ;
Carr, Steven A. ;
Wu, Catherine J. .
IMMUNITY, 2017, 46 (02) :315-326
[3]   SARS-CoV-2 T cell immunity: Specificity, function, durability, and role in protection [J].
Altmann, Daniel M. ;
Boyton, Rosemary J. .
SCIENCE IMMUNOLOGY, 2020, 5 (49)
[4]   GibbsCluster: unsupervised clustering and alignment of peptide sequences [J].
Andreatta, Massimo ;
Alvarez, Bruno ;
Nielsen, Morten .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W458-W463
[5]   Footprints of antigen processing boost MHC class II natural ligand predictions [J].
Barra, Carolina ;
Alvarez, Bruno ;
Paul, Sinu ;
Sette, Alessandro ;
Peters, Bjoern ;
Andreatta, Massimo ;
Buus, Soren ;
Nielsen, Morten .
GENOME MEDICINE, 2018, 10
[6]   Deconstructing the Peptide-MHC Specificity of T Cell Recognition [J].
Birnbaum, Michael E. ;
Mendoza, Juan L. ;
Sethi, Dhruv K. ;
Dong, Shen ;
Glanville, Jacob ;
Dobbins, Jessica ;
Oezkan, Engin ;
Davis, Mark M. ;
Wucherpfennig, Kai W. ;
Garcia, K. Christopher .
CELL, 2014, 157 (05) :1073-1087
[7]   Antigen dominance hierarchies shape TCF1+ progenitor CD8 T cell phenotypes in tumors [J].
Burger, Megan L. ;
Cruz, Amanda M. ;
Crossland, Grace E. ;
Gaglia, Giorgio ;
Ritch, Cecily C. ;
Blatt, Sarah E. ;
Bhutkar, Arjun ;
Canner, David ;
Kienka, Tamina ;
Tavana, Sara Z. ;
Barandiaran, Alexia L. ;
Garmilla, Andrea ;
Schenkel, Jason M. ;
Hillman, Michelle ;
Kobara, Izumi de los Rios ;
Li, Amy ;
Jaeger, Alex M. ;
Hwang, William L. ;
Westcott, Peter M. K. ;
Manos, Michael P. ;
Holovatska, Marta M. ;
Hodi, F. Stephen ;
Regev, Aviv ;
Santagata, Sandro ;
Jacks, Tyler .
CELL, 2021, 184 (19) :4996-+
[8]   Overview of the immune response [J].
Chaplin, David D. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2010, 125 (02) :S3-S23
[9]   Machine learning optimization of peptides for presentation by class II MHCs [J].
Dai, Zheng ;
Huisman, Brooke D. ;
Zeng, Haoyang ;
Carter, Brandon ;
Jain, Siddhartha ;
Birnbaum, Michael E. ;
Gifford, David K. .
BIOINFORMATICS, 2021, 37 (19) :3160-3167
[10]   Discovery of surrogate agonists for visceral fat Treg cells that modulate metabolic indices in vivo [J].
Fernandes, Ricardo A. ;
Li, Chaoran ;
Wang, Gang ;
Yang, Xinbo ;
Savvides, Christina S. ;
Glassman, Caleb R. ;
Dong, Shen ;
Luxenberg, Eric ;
Sibener, Leah V. ;
Birnbaum, Michael E. ;
Benoist, Christophe ;
Mathis, Diane ;
Garcia, K. Christopher .
ELIFE, 2020, 9