The monotonic property and stability of solutions of fractional differential equations

被引:21
作者
Choi, Sung Kyu [1 ]
Koo, Namjip [1 ]
机构
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词
Fractional derivatives; Fractional differential equations; Mittag-Leffler function; Fractional comparison principle; Mittag-Leffler system;
D O I
10.1016/j.na.2011.06.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we improve on the monotone property of Lemma 1.7.3 in Lakshmikantham et al. (2009) [5] for the case g(t, u) = lambda u with a nonnegative real number lambda. We also investigate the Mittag-Leffler stability of solutions of fractional differential equations by using the fractional comparison principle. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6530 / 6536
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[4]  
CHOI SK, 1995, ANN DIFFERENTIAL EQU, V11, P1
[5]   Fractional integral inequalities and applications [J].
Denton, Z. ;
Vatsala, A. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (03) :1087-1094
[6]   Theory of fractional functional differential equations [J].
Lakshmikantham, V. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (10) :3337-3343
[7]   Basic theory of fractional differential equations [J].
Lakshmikantham, V. ;
Vatsala, A. S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2677-2682
[8]   General uniqueness and monotone iterative technique for fractional differential equations [J].
Lakshmikantham, V. ;
Vatsala, A. S. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (08) :828-834
[9]  
Lakshmikantham V., 2007, Commun. Appl. Anal, V11, P395
[10]  
LAKSHMIKANTHAM V, 1969, DIFFERENTIAL INTEGRA, V2