Sufficient and necessary condition for the blowing-up solution to a class of coupled pseudo-parabolic equations

被引:6
作者
Xu, Guangyu [1 ]
Zhou, Jun [2 ]
机构
[1] Zhejiang Normal Univ, Coll Math & Comp Sci, Jinhua 321004, Zhejiang, Peoples R China
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
关键词
Coupled pseudo-parabolic systems; Finite time blowing-up; Nehari functional; GLOBAL EXISTENCE; EXPONENT;
D O I
10.1016/j.aml.2021.107886
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the blowing-up solution of the initial-boundary value problem to a class of coupled pseudo-parabolic equations. We obtain a sufficient and necessary condition which only depends on Nehari functional and then improve the recent blowing-up result about this model. Published by Elsevier Ltd.
引用
收藏
页数:6
相关论文
共 17 条
[1]   A DEGENERATE PSEUDOPARABOLIC REGULARIZATION OF A NONLINEAR FORWARD-BACKWARD HEAT-EQUATION ARISING IN THE THEORY OF HEAT AND MASS-EXCHANGE IN STABLY STRATIFIED TURBULENT SHEAR-FLOW [J].
BARENBLATT, GI ;
BERTSCH, M ;
DALPASSO, R ;
UGHI, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1993, 24 (06) :1414-1439
[2]   Cauchy problems of semilinear pseudo-parabolic equations [J].
Cao, Yang ;
Yin, Jingxue ;
Wang, Chunpeng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (12) :4568-4590
[3]   Blow-up phenomena for a pseudo-parabolic equation with variable exponents [J].
Di, Huafei ;
Shang, Yadong ;
Peng, Xiaoming .
APPLIED MATHEMATICS LETTERS, 2017, 64 :67-73
[4]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[5]   Finite time blowup for a semilinear pseudo-parabolic equation with general nonlinearity [J].
Han, Yuzhu .
APPLIED MATHEMATICS LETTERS, 2020, 99
[6]   Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation [J].
Padrón, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (07) :2739-2756
[8]  
SHOWALTE.RE, 1969, STUD APPL MATH, P51
[9]  
TING TW, 1963, ARCH RATION MECH AN, V14, P1
[10]  
Willem M., 1996, Minimax Theorems, DOI DOI 10.1007/978-1-4612-4146-1