A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images

被引:36
作者
Gao, Han [1 ,2 ]
Tang, Yunwei [1 ]
Jing, Linhai [1 ]
Li, Hui [1 ]
Ding, Haifeng [1 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
high spatial resolution remote sensing; image segmentation; unsupervised segmentation evaluation; spatial stratified heterogeneity; statistical features; ACCURACY ASSESSMENT; REGION; CLASSIFICATION; MULTIRESOLUTION; TEXTURE; SCALE;
D O I
10.3390/s17102427
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The segmentation of a high spatial resolution remote sensing image is a critical step in geographic object-based image analysis (GEOBIA). Evaluating the performance of segmentation without ground truth data, i.e., unsupervised evaluation, is important for the comparison of segmentation algorithms and the automatic selection of optimal parameters. This unsupervised strategy currently faces several challenges in practice, such as difficulties in designing effective indicators and limitations of the spectral values in the feature representation. This study proposes a novel unsupervised evaluation method to quantitatively measure the quality of segmentation results to overcome these problems. In this method, multiple spectral and spatial features of images are first extracted simultaneously and then integrated into a feature set to improve the quality of the feature representation of ground objects. The indicators designed for spatial stratified heterogeneity and spatial autocorrelation are included to estimate the properties of the segments in this integrated feature set. These two indicators are then combined into a global assessment metric as the final quality score. The trade-offs of the combined indicators are accounted for using a strategy based on the Mahalanobis distance, which can be exhibited geometrically. The method is tested on two segmentation algorithms and three testing images. The proposed method is compared with two existing unsupervised methods and a supervised method to confirm its capabilities. Through comparison and visual analysis, the results verified the effectiveness of the proposed method and demonstrated the reliability and improvements of this method with respect to other methods.
引用
收藏
页数:22
相关论文
共 50 条
[1]  
[Anonymous], 2000, P AGIS
[2]  
[Anonymous], 2001, Zeitschrift fur Geoinformationssysteme
[3]   Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information [J].
Benz, UC ;
Hofmann, P ;
Willhauck, G ;
Lingenfelder, I ;
Heynen, M .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2004, 58 (3-4) :239-258
[4]   Object based image analysis for remote sensing [J].
Blaschke, T. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2010, 65 (01) :2-16
[5]   Geographic Object-Based Image Analysis - Towards a new paradigm [J].
Blaschke, Thomas ;
Hay, Geoffrey J. ;
Kelly, Maggi ;
Lang, Stefan ;
Hofmann, Peter ;
Addink, Elisabeth ;
Feitosa, Raul Queiroz ;
van der Meer, Freek ;
van der Werff, Harald ;
van Coillie, Frieke ;
Tiede, Dirk .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 87 :180-191
[6]   On the Objectivity of the Objective Function-Problems with Unsupervised Segmentation Evaluation Based on Global Score and a Possible Remedy [J].
Boeck, Sebastian ;
Immitzer, Markus ;
Atzberger, Clement .
REMOTE SENSING, 2017, 9 (08)
[7]   Quantitative evaluation of color image segmentation results [J].
Borsotti, M ;
Campadelli, P ;
Schettini, R .
PATTERN RECOGNITION LETTERS, 1998, 19 (08) :741-747
[8]   A multi-scale segmentation/object relationship modelling methodology for landscape analysis [J].
Burnett, C ;
Blaschke, T .
ECOLOGICAL MODELLING, 2003, 168 (03) :233-249
[9]   Toward a generic evaluation of image segmentation [J].
Cardoso, JS ;
Corte-Real, L .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2005, 14 (11) :1773-1782
[10]   Unsupervised performance evaluation of image segmentation [J].
Chabrier, Sebastien ;
Emile, Bruno ;
Rosenberger, Christophe ;
Laurent, Helene .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1)