Shape and margin-aware lung nodule classification in low-dose CT images via soft activation mapping

被引:63
作者
Lei, Yiming [1 ]
Tian, Yukun [1 ]
Shan, Hongming [2 ]
Zhang, Junping [1 ]
Wang, Ge [2 ]
Kalra, Mannudeep K. [3 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[2] Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA
[3] Harvard Med Sch, Massachusetts Gen Hosp, Dept Radiol, Boston, MA 02114 USA
基金
中国国家自然科学基金;
关键词
Low-dose CT; Lung nodule classification; Fine-grained features; Convolutional neural network; Soft activation mapping; FALSE-POSITIVE REDUCTION; NEURAL-NETWORK; CANCER; SCANS;
D O I
10.1016/j.media.2019.101628
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A number of studies on lung nodule classification lack clinical/biological interpretations of the features extracted by convolutional neural network (CNN). The methods like class activation mapping (CAM) and gradient-based CAM (Grad-CAM) are tailored for interpreting localization and classification tasks while they ignored fine-grained features. Therefore, CAM and Grad-CAM cannot provide optimal interpretation for lung nodule categorization task in low-dose CT images, in that fine-grained pathological clues like discrete and irregular shape and margins of nodules are capable of enhancing sensitivity and specificity of nodule classification with regards to CNN. In this paper, we first develop a soft activation mapping (SAM) to enable fine-grained lung nodule shape & margin (LNSM) feature analysis with a CNN so that it can access rich discrete features. Secondly, by combining high-level convolutional features with SAM, we further propose a high-level feature enhancement scheme (HESAM) to localize LNSM features. Experiments on the LIDC-IDRI dataset indicate that 1) SAM captures more fine-grained and discrete attention regions than existing methods, 2) HESAM localizes more accurately on LNSM features and obtains the state-of-the-art predictive performance, reducing the false positive rate, and 3) we design and conduct a visually matching experiment which incorporates radiologists study to increase the confidence level of applying our method to clinical diagnosis. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 54 条
[31]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[32]   A survey on deep learning in medical image analysis [J].
Litjens, Geert ;
Kooi, Thijs ;
Bejnordi, Babak Ehteshami ;
Setio, Arnaud Arindra Adiyoso ;
Ciompi, Francesco ;
Ghafoorian, Mohsen ;
van der Laak, Jeroen A. W. M. ;
van Ginneken, Bram ;
Sanchez, Clara I. .
MEDICAL IMAGE ANALYSIS, 2017, 42 :60-88
[33]   A Survey on Transfer Learning [J].
Pan, Sinno Jialin ;
Yang, Qiang .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2010, 22 (10) :1345-1359
[34]  
Pennell WT, 2011, TECHNICAL CHALLENGES OF MULTIPOLLUTANT AIR QUALITY MANAGEMENT, P1, DOI 10.1007/978-94-007-0304-9_1
[35]   Learning to detect chest radiographs containing pulmonary lesions using visual attention networks [J].
Pesce, Emanuele ;
Withey, Samuel Joseph ;
Ypsilantis, Petros-Pavlos ;
Bakewell, Robert ;
Goh, Vicky ;
Montana, Giovanni .
MEDICAL IMAGE ANALYSIS, 2019, 53 :26-38
[36]  
Ritter S., 2017, P 34 INT C MACHINE
[37]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[38]   ImageNet Large Scale Visual Recognition Challenge [J].
Russakovsky, Olga ;
Deng, Jia ;
Su, Hao ;
Krause, Jonathan ;
Satheesh, Sanjeev ;
Ma, Sean ;
Huang, Zhiheng ;
Karpathy, Andrej ;
Khosla, Aditya ;
Bernstein, Michael ;
Berg, Alexander C. ;
Fei-Fei, Li .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) :211-252
[39]   Attention gated networks: Learning to leverage salient regions in medical images [J].
Schlemper, Jo ;
Oktay, Ozan ;
Schaap, Michiel ;
Heinrich, Mattias ;
Kainz, Bernhard ;
Glocker, Ben ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2019, 53 :197-207
[40]   Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization [J].
Selvaraju, Ramprasaath R. ;
Cogswell, Michael ;
Das, Abhishek ;
Vedantam, Ramakrishna ;
Parikh, Devi ;
Batra, Dhruv .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :618-626