Optimal parameters for anomalous-diffusion-exponent estimation from noisy data

被引:26
作者
Lanoiselee, Yann [1 ]
Sikora, Grzegorz [2 ]
Grzesiek, Aleksandra [2 ]
Grebenkov, Denis S. [1 ]
Wylomanska, Agnieszka [2 ]
机构
[1] Ecole Polytech, CNRS, Lab Phys Matiere Condensee, UMR 7643, F-91128 Palaiseau, France
[2] Wroclaw Univ Sci & Technol, Fac Pure & Appl Math, Hugo Steinhaus Ctr, Wybrzeze Wyspianskiego 27, PL-50370 Wroclaw, Poland
关键词
SINGLE-PARTICLE TRAJECTORIES;
D O I
10.1103/PhysRevE.98.062139
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The most common way of estimating the anomalous-diffusion exponent from single-particle trajectories consists in a linear fitting of the dependence of the time averaged mean square displacement on the lag time at the log-log scale. However, various measurement noises that are unavoidably present in experimental data can strongly deteriorate the quality of this estimation procedure and bias the estimated exponent. To investigate the impact of noises and to improve the estimation quality, we compare three approaches for estimating the anomalous-diffusion exponent and check their efficiency on fractional Brownian motion corrupted by Gaussian noise. We discuss how the parameters of both the anomalous-diffusion model and the estimation techniques influence the estimated exponent. We show that the conventional linear fitting is the least optimal method for the analysis of noisy data.
引用
收藏
页数:7
相关论文
共 35 条
[1]   Time-averaged MSD of Brownian motion [J].
Andreanov, Alexei ;
Grebenkov, Denis S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
[2]   Temporal Analysis of Active and Passive Transport in Living Cells [J].
Arcizet, Delphine ;
Meier, Boern ;
Sackmann, Erich ;
Raedler, Joachim O. ;
Heinrich, Doris .
PHYSICAL REVIEW LETTERS, 2008, 101 (24)
[3]  
Beran J., 1994, Statistics for Long-Memory Processes
[4]   Optical trapping microrheology in cultured human cells [J].
Bertseva, E. ;
Grebenkov, D. ;
Schmidhauser, P. ;
Gribkova, S. ;
Jeney, S. ;
Forro, L. .
EUROPEAN PHYSICAL JOURNAL E, 2012, 35 (07)
[5]   Stochastic models of intracellular transport [J].
Bressloff, Paul C. ;
Newby, Jay M. .
REVIEWS OF MODERN PHYSICS, 2013, 85 (01) :135-196
[6]   Fractional Levy stable motion can model subdiffusive dynamics [J].
Burnecki, Krzysztof ;
Weron, Aleksander .
PHYSICAL REVIEW E, 2010, 82 (02)
[7]  
Coleman T.F., 1994, MATH PROGRAM, V67, P1, DOI [10.1007/BF01582221, DOI 10.1007/BF01582221]
[8]   An interior trust region approach for nonlinear minimization subject to bounds [J].
Coleman, TF ;
Li, YY .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (02) :418-445
[9]  
Ernst D, 2013, PHYS CHEM CHEM PHYS, V15, P3429, DOI [10.1039/c3cp44391d, 10.1039/c3cp44391]
[10]   Particle tracking in living cells: a review of the mean square displacement method and beyond [J].
Gal, Naama ;
Lechtman-Goldstein, Diana ;
Weihs, Daphne .
RHEOLOGICA ACTA, 2013, 52 (05) :425-443