An FPGA Accelerator of the Wavefront Algorithm for Genomics Pairwise Alignment

被引:18
作者
Haghi, Abbas [1 ,2 ]
Marco-Sola, Santiago [1 ,3 ]
Alvarez, Lluc [1 ,2 ]
Diamantopoulos, Dionysios [4 ]
Hagleitner, Christoph [4 ]
Moreto, Miquel [1 ,2 ]
机构
[1] Barcelona Supercomp Ctr BSC, Barcelona, Spain
[2] Univ Politecn Catalunya UPC, Barcelona, Spain
[3] Univ Autonoma Barcelona UAB, Barcelona, Spain
[4] IBM Res Europe, Zurich, Switzerland
来源
2021 31ST INTERNATIONAL CONFERENCE ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS (FPL 2021) | 2021年
关键词
FPGA; co-design; acceleration; CAPI; genomics; WFA; Alignment; SMITH-WATERMAN IMPLEMENTATION;
D O I
10.1109/FPL53798.2021.00033
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the last years, advances in next-generation sequencing technologies have enabled the proliferation of genomic applications that guide personalized medicine. These applications have an enormous computational cost due to the large amount of genomic data they process. The first step in many of these applications consists in aligning reads against a reference genome. Very recently, the wavefront alignment algorithm has been introduced, significantly reducing the execution time of the read alignment process. This paper presents the first FPGA-based hardware/software co-designed accelerator of such relevant algorithm. Compared to the reference WFA CPU-only implementation, the proposed FPGA accelerator achieves performance speedups of up to 13.5x while consuming up to 14.6x less energy.
引用
收藏
页码:151 / 159
页数:9
相关论文
共 65 条
[1]  
Allred J, 2009, INT PARALL DISTRIB P, P2989
[2]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[3]   Reconfigurable Acceleration of Short Read Mapping [J].
Arram, James ;
Tsoi, Kuen Hung ;
Luk, Wayne ;
Jiang, Peiyong .
2013 IEEE 21ST ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2013, :210-217
[4]   ASAP: Accelerated Short-Read Alignment on Programmable Hardware [J].
Banerjee, Subho Sankar ;
El-Hadedy, Mohamed ;
Lim, Jong Bin ;
Kalbarczyk, Zbigniew T. ;
Chen, Deming ;
Lumetta, Steven S. ;
Iyer, Ravishankar K. .
IEEE TRANSACTIONS ON COMPUTERS, 2019, 68 (03) :331-346
[5]   A Block-Based Systolic Array on an HBM2 FPGA for DNA Sequence Alignment [J].
Ben Abdelhamid, Riadh ;
Yamaguchi, Yoshiki .
APPLIED RECONFIGURABLE COMPUTING. ARCHITECTURES, TOOLS, AND APPLICATIONS, ARC 2020, 2020, 12083 :298-313
[6]   A Highly Parameterized and Efficient FPGA-Based Skeleton for Pairwise Biological Sequence Alignment [J].
Benkrid, Khaled ;
Liu, Ying ;
Benkrid, AbdSamad .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2009, 17 (04) :561-570
[7]   Protein alignment algorithms with an efficient backtracking routine on multiple GPUs [J].
Blazewicz, Jacek ;
Frohmberg, Wojciech ;
Kierzynka, Michal ;
Pesch, Erwin ;
Wojciechowski, Pawel .
BMC BIOINFORMATICS, 2011, 12
[8]   A Novel High-Throughput Acceleration Engine for Read Alignment [J].
Chen, Yu-Ting ;
Cong, Jason ;
Lei, Jie ;
Wei, Peng .
2015 IEEE 23RD ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM), 2015, :199-202
[9]   A DNA Read Alignment Accelerator Based on Computational RAM [J].
Chowdhury, Zamshed I. ;
Zabihi, Masoud ;
Khatamifard, S. Karen ;
Zhao, Zhengyang ;
Resch, Salonik ;
Razaviyayn, Meisam ;
Wang, Jian-Ping ;
Sapatnekar, Sachin S. ;
Karpuzcu, Ulya R. .
IEEE JOURNAL ON EXPLORATORY SOLID-STATE COMPUTATIONAL DEVICES AND CIRCUITS, 2020, 6 (01) :80-88
[10]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+