Impact of short duration, high-flow H2 annealing on graphene synthesis and surface morphology with high spatial resolution assessment of coverage

被引:12
作者
Shah, Sohail [1 ]
Chiou, Yu-Cheng [1 ]
Lai, Chia Yun [1 ]
Apostoleris, Harry [1 ]
Rahman, Md. Mahfuzur [1 ]
Younes, Hammad [1 ]
Almansouri, Ibraheem [1 ]
Al Ghaferi, Amal [1 ]
Chiesa, Matteo [1 ]
机构
[1] Khalifa Univ Sci & Technol, Lab Energy & Nano Sci, POB 54224, Abu Dhabi, U Arab Emirates
关键词
AFM; CVD; Graphene; CHEMICAL-VAPOR-DEPOSITION; POLYCRYSTALLINE COPPER; MONOLAYER GRAPHENE; SUBNANOMETER GAPS; GROWTH; HYDROGEN; PRESSURE; FILMS; NUCLEATION; GRAPHITE;
D O I
10.1016/j.carbon.2017.09.048
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Treatment of graphene growth substrates with H-2 has long been known to impact the quality of deposited graphene. However, the parameters for hydrogen treatment that are considered the optimum - very long anneals under low hydrogen concentrations - are often undesirable for practical reasons. In this paper we optimize anneal parameters for fast anneals of <1 h, via investigation of both substrate surface modification and graphene growth quality using a number of traditional and novel experimental techniques. Our results indicate a dual effect of H-2 annealing on the surface morphology of the copper substrate, and consequent graphene growth quality, whereby H-2 passivates and smoothens the Cu surface, causing it to become morphologically more favorable for graphene growth, but may in large quantities make the surface less chemically favorable, limiting the quality of grown graphene. Moreover, we use a novel method based on Atomic Force Microscopy (AFM) for higher spatial resolution analysis of the homogeneity of graphene using maps of the Hamaker coefficient. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:318 / 326
页数:9
相关论文
共 37 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[3]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[4]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[5]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[6]   Turning off Hydrogen To Realize Seeded Growth of Subcentimeter Single-Crystal Graphene Grains on Copper [J].
Gan, Lin ;
Luo, Zhengtang .
ACS NANO, 2013, 7 (10) :9480-9488
[7]   Uniform hexagonal graphene flakes and films grown on liquid copper surface [J].
Geng, Dechao ;
Wu, Bin ;
Guo, Yunlong ;
Huang, Liping ;
Xue, Yunzhou ;
Chen, Jianyi ;
Yu, Gui ;
Jiang, Lang ;
Hu, Wenping ;
Liu, Yunqi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (21) :7992-7996
[8]   Raman imaging of graphene [J].
Graf, D. ;
Molitor, F. ;
Ensslin, K. ;
Stampfer, C. ;
Jungen, A. ;
Hierold, C. ;
Wirtz, L. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :44-46
[9]   Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors [J].
Guermoune, Abdeladim ;
Chari, Tarun ;
Popescu, Filip ;
Sabri, Shadi S. ;
Guillemette, Jonathan ;
Skulason, Helgi S. ;
Szkopek, Thomas ;
Siaj, Mohamed .
CARBON, 2011, 49 (13) :4204-4210
[10]   Effect of hydrogen flow during cooling phase to achieve uniform and repeatable growth of bilayer graphene on copper foils over large area [J].
Gulotty, Richard ;
Das, Saptarshi ;
Liu, Yuzi ;
Sumant, Anirudha V. .
CARBON, 2014, 77 :341-350