Stealth Biocompatible Si-Based Nanoparticles for Biomedical Applications

被引:8
作者
Liu, Wei [1 ]
Chaix, Arnaud [2 ]
Gary-Bobo, Magali [3 ]
Angeletti, Bernard [1 ]
Masion, Armand [1 ]
Da Silva, Afitz [3 ,4 ]
Daurat, Morgane [3 ,4 ]
Lichon, Laure [3 ]
Garcia, Marcel [3 ]
Morere, Alain [3 ]
El Cheikh, Khaled [4 ]
Durand, Jean-Olivier [2 ]
Cunin, Frederique [2 ]
Auffan, Melanie [1 ]
机构
[1] Aix Marseille Univ, Coll France, CNRS, IRD,CEREGE, F-13545 Aix En Provence, France
[2] Ecole Natl Super Chim Montpellier, UMR CNRS ENSCM UM 5253, Inst Charles Gerhardt Montpellier, 8 Rue Ecole Normale, F-34296 Montpellier, France
[3] Inst Biomol Max Mousseron, UMR CNRS UM 5247, 15 Ave Charles Flahault,BP 14491, F-34093 Montpellier 05, France
[4] NanoMedSyn, 15 Ave Charles Flahault,BP 14491, F-34093 Montpellier 05, France
关键词
porous silicon nanoparticle; surface functionalization; PEG; mannose; stealth properties; biodegradation kinetic; biocompatibility; MESOPOROUS SILICA NANOPARTICLES; IN-VIVO BIODISTRIBUTION; POROUS SILICON; DRUG-DELIVERY; CANCER-THERAPY; POLY(ETHYLENE GLYCOL); PHOTODYNAMIC THERAPY; PROTEIN CORONA; CELLS; PEG;
D O I
10.3390/nano7100288
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A challenge regarding the design of nanocarriers for drug delivery is to prevent their recognition by the immune system. To improve the blood residence time and prevent their capture by organs, nanoparticles can be designed with stealth properties using polymeric coating. In this study, we focused on the influence of surface modification with polyethylene glycol and/or mannose on the stealth behavior of porous silicon nanoparticles (pSiNP, similar to 200 nm). In vivo biodistribution of pSiNPs formulations were evaluated in mice 5 h after intravenous injection. Results indicated that the distribution in the organs was surface functionalization-dependent. Pristine pSiNPs and PEGylated pSiNPs were distributed mainly in the liver and spleen, while mannose-functionalized pSiNPs escaped capture by the spleen, and had higher blood retention. The most efficient stealth behavior was observed with PEGylated pSiNPs anchored with mannose that were the most excreted in urine at 5 h. The biodegradation kinetics evaluated in vitro were in agreement with these in vivo observations. The biocompatibility of the pristine and functionalized pSiNPs was confirmed in vitro on human cell lines and in vivo by cytotoxic and systemic inflammation investigations, respectively. With their biocompatibility, biodegradability, and stealth properties, the pSiNPs functionalized with mannose and PEG show promising potential for biomedical applications.
引用
收藏
页数:15
相关论文
共 51 条
[31]   Use of Size and a Copolymer Design Feature To Improve the Biodistribution and the Enhanced Permeability and Retention Effect of Doxorubicin-Loaded Mesoporous Silica Nanoparticles in a Murine Xenograft Tumor Model [J].
Meng, Huan ;
Xue, Min ;
Xia, Tian ;
Ji, Zhaoxia ;
Tarn, Derrick Y. ;
Zink, Jeffrey I. ;
Nel, Andre E. .
ACS NANO, 2011, 5 (05) :4131-4144
[32]   Reversible versus Irreversible Binding of Transferrin to Polystyrene Nanoparticles: Soft and Hard Corona [J].
Milani, Silvia ;
Bombelli, Francesca Baldelli ;
Pitek, Andrzej S. ;
Dawson, Kenneth A. ;
Raedler, Joachim .
ACS NANO, 2012, 6 (03) :2532-2541
[33]   Polymeric protective agents for nanoparticles in drug delivery and targeting [J].
Mogosanu, George Dan ;
Grumezescu, Alexandru Mihai ;
Bejenaru, Cornelia ;
Bejenaru, Ludovic Everard .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2016, 510 (02) :419-429
[34]   Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles [J].
Monopoli, Marco P. ;
Walczyk, Dorota ;
Campbell, Abigail ;
Elia, Giuliano ;
Lynch, Iseult ;
Bombelli, Francesca Baldelli ;
Dawson, Kenneth A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (08) :2525-2534
[35]   PEG-templated mesoporous silica nanoparticles exclusively target cancer cells [J].
Morelli, Catia ;
Maris, Pamela ;
Sisci, Diego ;
Perrotta, Enrico ;
Brunelli, Elvira ;
Perrotta, Ida ;
Panno, Maria Luisa ;
Tagarelli, Antonio ;
Versace, Carlo ;
Casula, Maria Francesca ;
Testa, Flaviano ;
Ando, Sebastiano ;
Nagy, Janos B. ;
Pasqua, Luigi .
NANOSCALE, 2011, 3 (08) :3198-3207
[36]  
Nel AE, 2009, NAT MATER, V8, P543, DOI [10.1038/NMAT2442, 10.1038/nmat2442]
[37]  
Park JH, 2009, NAT MATER, V8, P331, DOI [10.1038/NMAT2398, 10.1038/nmat2398]
[38]   Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake [J].
Pelaz, Beatriz ;
del Pino, Pablo ;
Maffre, Pauline ;
Hartmann, Raimo ;
Gallego, Marta ;
Rivera-Fernández, Sara ;
de la Fuente, Jesus M. ;
Nienhaus, G. Ulrich ;
Parak, Wolfgang J. .
ACS NANO, 2015, 9 (07) :6996-7008
[39]   Mannose-functionalized porous silica-coated magnetic nanoparticles for two-photon imaging or PDT of cancer cells [J].
Perrier, Marine ;
Gary-Bobo, Magali ;
Lartigue, Lenaic ;
Brevet, David ;
Morere, Alain ;
Garcia, Marcel ;
Maillard, Philippe ;
Raehm, Laurence ;
Guari, Yannick ;
Larionova, Joulia ;
Durand, Jean-Olivier ;
Mongin, Olivier ;
Blanchard-Desce, Mireille .
JOURNAL OF NANOPARTICLE RESEARCH, 2013, 15 (05)
[40]   PEGylated PRINT Nanoparticles: The Impact of PEG Density on Protein Binding, Macrophage Association, Biodistribution, and Pharmacokinetics [J].
Perry, Jillian L. ;
Reuter, Kevin G. ;
Kai, Marc P. ;
Herlihy, Kevin P. ;
Jones, Stephen W. ;
Luft, J. Chris ;
Napier, Mary ;
Bear, James E. ;
DeSimone, Joseph M. .
NANO LETTERS, 2012, 12 (10) :5304-5310