Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations

被引:55
作者
Malaguti, L
Marcelli, C
机构
[1] Univ Ancona, Dept Math Sci, I-60131 Ancona, Italy
[2] Univ Modena & Reggio Emilia, Dept Engn Sci & Methods, I-42100 Reggio Emilia, Italy
关键词
travelling wave solutions; sharp solutions; degenerate and doubly degenerate diffusion; wave speed; first-order singular boundary value problems;
D O I
10.1016/j.jde.2003.06.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the effects of a degenerate diffusion term in reaction-diffusion models u(t) - [D(u)u(x)](x) + g(u) with Fisher-KPP type g. Both in the case when D(0) = 0 and when D(0) = D(l) = 0, with D(u) > 0 elsewhere, we obtain a continuum of travelling wave solutions having wave speed c greater than a threshold value c* and we show the appearance of a sharp-type profile when c = c*. These results solve recent conjectures formulated by Sanchez-Garduno and Maim (J. Differential Equations 117 (1995) 281) and Satnoianu et al. (Discrete Continuous Dyn. Systems (Series B) 1 (2000) 339). (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:471 / 496
页数:26
相关论文
共 16 条
[1]  
Aronson D.G., 1980, DYNAMICS MODELLING R, P161, DOI [DOI 10.1016/13978-0-12-669550-2.50010-5, 10.1016/B978-0-12-669550-2.50010-5, DOI 10.1016/B978-0-12-669550-2.50010-5]
[2]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[3]   TRAVELING WAVE SOLUTIONS TO COMBUSTION MODELS AND THEIR SINGULAR LIMITS [J].
BERESTYCKI, H ;
NICOLAENKO, B ;
SCHEURER, B .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1985, 16 (06) :1207-1242
[4]   TRAVELING WAVES AND FINITE PROPAGATION IN A REACTION-DIFFUSION EQUATION [J].
DEPABLO, A ;
VAZQUEZ, JL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 93 (01) :19-61
[5]   RELATIONS BETWEEN TRAVELING WAVE SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS [J].
ENGLER, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (02) :297-302
[6]  
Fife P. C., 1979, LECT NOTES BIOMATHEM, V28
[7]  
Hadeler KP, 1983, FREE BOUNDARY PROBLE, VII, P665
[8]  
Ladde GS., 1985, MONOTONE ITERATIVE T
[9]  
Malaguti L, 2003, DYNAM SYST APPL, V12, P333
[10]  
Malaguti L, 2002, MATH NACHR, V242, P148, DOI 10.1002/1522-2616(200207)242:1<148::AID-MANA148>3.0.CO