Observer Design for a Class of Nonlinear Systems Driven by Stochastic Process With Bounded Covariance

被引:0
作者
Tamba, T. A. [1 ]
Turnip, A. [2 ]
机构
[1] Bandung Inst Technol, Dept Engn Phys, Java 40132, Indonesia
[2] Indonesian Inst Sci, Tech Implementat Unit Instrumentat Dev, Sangkuriang Bandung, Indonesia
来源
2015 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS) | 2015年
关键词
Stochastic process; lipschitz nonlinear systems; observer; linear matrix inequality; FAULT-DIAGNOSIS; STATE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an observer design method for Lipschitz nonlinear systems driven by stochastic processes with bounded covariances. A linear matrix inequality for searching an observer gain that guarantees the ultimate boundedness of the estimation error is derived. The proposed method is illustrated through an example in robotic applications.
引用
收藏
页码:1128 / 1132
页数:5
相关论文
共 27 条
[1]   Robust H∞ observer design for sampled-data Lipschitz nonlinear systems with exact and Euler approximate models [J].
Abbaszadeh, Masoud ;
Marquez, Horacio J. .
AUTOMATICA, 2008, 44 (03) :799-806
[2]   Observers for Lipschitz non-linear systems [J].
Aboky, C ;
Sallet, G .
INTERNATIONAL JOURNAL OF CONTROL, 2002, 75 (03) :204-212
[3]  
[Anonymous], 1994, LINEAR MATRIX INEQUA
[4]  
[Anonymous], 2007, STOCHASTIC DIFFERENT
[5]  
Balas G., 2005, USE MATLAB USERS GUI, V3
[6]  
Isidori A., 1995, NONLINEAR CONTROL SY, V3rd, DOI 10.1007/978-1-84628-615-5
[7]  
Khasminskii R., 2011, STOCHASTIC STABILITY, V66
[8]   Constructive nonlinear control: a historical perspective [J].
Kokotovic, P ;
Arcak, M .
AUTOMATICA, 2001, 37 (05) :637-662
[9]  
Kokotovic P. V., 1992, IEEE Control Systems Magazine, V12, P7, DOI 10.1109/37.165507
[10]   Sliding mode state observation for non-linear systems [J].
Koshkouei, AJ ;
Zinober, ASI .
INTERNATIONAL JOURNAL OF CONTROL, 2004, 77 (02) :118-127